Andong Lin, Yini Chen, Yi Chen, Zhinan Ye, Weili Luo, Ying Chen, Yaping Zhang, Wenjie Wang
{"title":"MRI radiomics combined with machine learning for diagnosing mild cognitive impairment: a focus on the cerebellar gray and white matter.","authors":"Andong Lin, Yini Chen, Yi Chen, Zhinan Ye, Weili Luo, Ying Chen, Yaping Zhang, Wenjie Wang","doi":"10.3389/fnagi.2024.1460293","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Mild Cognitive Impairment (MCI) is a recognized precursor to Alzheimer's Disease (AD), presenting a significant risk of progression. Early detection and intervention in MCI can potentially slow disease advancement, offering substantial clinical benefits. This study employed radiomics and machine learning methodologies to distinguish between MCI and Normal Cognition (NC) groups.</p><p><strong>Methods: </strong>The study included 172 MCI patients and 183 healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, all of whom had 3D-T1 weighted MRI structural images. The cerebellar gray and white matter were segmented automatically using volBrain software, and radiomic features were extracted and screened through Pyradiomics. The screened features were then input into various machine learning models, including Random Forest (RF), Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), K Nearest Neighbors (KNN), Extra Trees, Light Gradient Boosting Machine (LightGBM), and Multilayer Perceptron (MLP). Each model was optimized for penalty parameters through 5-fold cross-validation to construct radiomic models. The DeLong test was used to evaluate the performance of different models.</p><p><strong>Results: </strong>The LightGBM model, which utilizes a combination of cerebellar gray and white matter features (comprising eight gray matter and eight white matter features), emerges as the most effective model for radiomics feature analysis. The model demonstrates an Area Under the Curve (AUC) of 0.863 for the training set and 0.776 for the test set.</p><p><strong>Conclusion: </strong>Radiomic features based on the cerebellar gray and white matter, combined with machine learning, can objectively diagnose MCI, which provides significant clinical value for assisted diagnosis.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"16 ","pages":"1460293"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2024.1460293","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Mild Cognitive Impairment (MCI) is a recognized precursor to Alzheimer's Disease (AD), presenting a significant risk of progression. Early detection and intervention in MCI can potentially slow disease advancement, offering substantial clinical benefits. This study employed radiomics and machine learning methodologies to distinguish between MCI and Normal Cognition (NC) groups.
Methods: The study included 172 MCI patients and 183 healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, all of whom had 3D-T1 weighted MRI structural images. The cerebellar gray and white matter were segmented automatically using volBrain software, and radiomic features were extracted and screened through Pyradiomics. The screened features were then input into various machine learning models, including Random Forest (RF), Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), K Nearest Neighbors (KNN), Extra Trees, Light Gradient Boosting Machine (LightGBM), and Multilayer Perceptron (MLP). Each model was optimized for penalty parameters through 5-fold cross-validation to construct radiomic models. The DeLong test was used to evaluate the performance of different models.
Results: The LightGBM model, which utilizes a combination of cerebellar gray and white matter features (comprising eight gray matter and eight white matter features), emerges as the most effective model for radiomics feature analysis. The model demonstrates an Area Under the Curve (AUC) of 0.863 for the training set and 0.776 for the test set.
Conclusion: Radiomic features based on the cerebellar gray and white matter, combined with machine learning, can objectively diagnose MCI, which provides significant clinical value for assisted diagnosis.
期刊介绍:
Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.