Jon Ahlinder, David Hall, Mari Suontama, Mikko J Sillanpää
{"title":"Principal component analysis revisited: fast multitrait genetic evaluations with smooth convergence.","authors":"Jon Ahlinder, David Hall, Mari Suontama, Mikko J Sillanpää","doi":"10.1093/g3journal/jkae228","DOIUrl":null,"url":null,"abstract":"<p><p>A cornerstone in breeding and population genetics is the genetic evaluation procedure, needed to make important decisions on population management. Multivariate mixed model analysis, in which many traits are considered jointly, utilizes genetic and environmental correlations between traits to improve the accuracy. However, the number of parameters in the multitrait model grows exponentially with the number of traits which reduces its scalability. Here, we suggest using principal component analysis to reduce the dimensions of the response variables, and then using the computed principal components as separate responses in the genetic evaluation analysis. As principal components are orthogonal to each other so that phenotypic covariance is abscent between principal components, a full multivariate analysis can be approximated by separate univariate analyses instead which should speed up computations considerably. We compared the approach to both traditional multivariate analysis and factor analytic approach in terms of computational requirement and rank lists according to predicted genetic merit on two forest tree datasets with 22 and 27 measured traits, respectively. Obtained rank lists of the top 50 individuals were in good agreement. Interestingly, the required computational time of the approach only took a few seconds without convergence issues, unlike the traditional approach which required considerably more time to run (7 and 10 h, respectively). The factor analytic approach took approximately 5-10 min. Our approach can easily handle missing data and can be used with all available linear mixed effect model softwares as it does not require any specific implementation. The approach can help to mitigate difficulties with multitrait genetic analysis in both breeding and wild populations.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae228","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
A cornerstone in breeding and population genetics is the genetic evaluation procedure, needed to make important decisions on population management. Multivariate mixed model analysis, in which many traits are considered jointly, utilizes genetic and environmental correlations between traits to improve the accuracy. However, the number of parameters in the multitrait model grows exponentially with the number of traits which reduces its scalability. Here, we suggest using principal component analysis to reduce the dimensions of the response variables, and then using the computed principal components as separate responses in the genetic evaluation analysis. As principal components are orthogonal to each other so that phenotypic covariance is abscent between principal components, a full multivariate analysis can be approximated by separate univariate analyses instead which should speed up computations considerably. We compared the approach to both traditional multivariate analysis and factor analytic approach in terms of computational requirement and rank lists according to predicted genetic merit on two forest tree datasets with 22 and 27 measured traits, respectively. Obtained rank lists of the top 50 individuals were in good agreement. Interestingly, the required computational time of the approach only took a few seconds without convergence issues, unlike the traditional approach which required considerably more time to run (7 and 10 h, respectively). The factor analytic approach took approximately 5-10 min. Our approach can easily handle missing data and can be used with all available linear mixed effect model softwares as it does not require any specific implementation. The approach can help to mitigate difficulties with multitrait genetic analysis in both breeding and wild populations.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.