Noémie Beauchemin, Patrick Charland, Alexander Karran, Jared Boasen, Bella Tadson, Sylvain Sénécal, Pierre-Majorique Léger
{"title":"Enhancing learning experiences: EEG-based passive BCI system adapts learning speed to cognitive load in real-time, with motivation as catalyst.","authors":"Noémie Beauchemin, Patrick Charland, Alexander Karran, Jared Boasen, Bella Tadson, Sylvain Sénécal, Pierre-Majorique Léger","doi":"10.3389/fnhum.2024.1416683","DOIUrl":null,"url":null,"abstract":"<p><p>Computer-based learning has gained popularity in recent years, providing learners greater flexibility and freedom. However, these learning environments do not consider the learner's mental state in real-time, resulting in less optimized learning experiences. This research aimed to explore the effect on the learning experience of a novel EEG-based Brain-Computer Interface (BCI) that adjusts the speed of information presentation in real-time during a learning task according to the learner's cognitive load. We also explored how motivation moderated these effects. In accordance with three experimental groups (non-adaptive, adaptive, and adaptive with motivation), participants performed a calibration task (<i>n</i>-back), followed by a memory-based learning task concerning astrological constellations. Learning gains were assessed based on performance on the learning task. Self-perceived mental workload, cognitive absorption and satisfaction were assessed using a post-test questionnaire. Between-group analyses using Mann-Whitney tests suggested that combining BCI and motivational factors led to more significant learning gains and an improved learning experience. No significant difference existed between the BCI without motivational factor and regular non-adaptive interface for overall learning gains, self-perceived mental workload, and cognitive absorption. However, participants who undertook the experiment with an imposed learning pace reported higher overall satisfaction with their learning experience and a higher level of temporal stress. Our findings suggest BCI's potential applicability and feasibility in improving memorization-based learning experiences. Further work should seek to optimize the BCI adaptive index and explore generalizability to other learning contexts.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1416683"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1416683","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-based learning has gained popularity in recent years, providing learners greater flexibility and freedom. However, these learning environments do not consider the learner's mental state in real-time, resulting in less optimized learning experiences. This research aimed to explore the effect on the learning experience of a novel EEG-based Brain-Computer Interface (BCI) that adjusts the speed of information presentation in real-time during a learning task according to the learner's cognitive load. We also explored how motivation moderated these effects. In accordance with three experimental groups (non-adaptive, adaptive, and adaptive with motivation), participants performed a calibration task (n-back), followed by a memory-based learning task concerning astrological constellations. Learning gains were assessed based on performance on the learning task. Self-perceived mental workload, cognitive absorption and satisfaction were assessed using a post-test questionnaire. Between-group analyses using Mann-Whitney tests suggested that combining BCI and motivational factors led to more significant learning gains and an improved learning experience. No significant difference existed between the BCI without motivational factor and regular non-adaptive interface for overall learning gains, self-perceived mental workload, and cognitive absorption. However, participants who undertook the experiment with an imposed learning pace reported higher overall satisfaction with their learning experience and a higher level of temporal stress. Our findings suggest BCI's potential applicability and feasibility in improving memorization-based learning experiences. Further work should seek to optimize the BCI adaptive index and explore generalizability to other learning contexts.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.