Forecasting to support EMS tactical planning: what is important and what is not.

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Health Care Management Science Pub Date : 2024-12-01 Epub Date: 2024-10-19 DOI:10.1007/s10729-024-09690-7
Mostafa Rezaei, Armann Ingolfsson
{"title":"Forecasting to support EMS tactical planning: what is important and what is not.","authors":"Mostafa Rezaei, Armann Ingolfsson","doi":"10.1007/s10729-024-09690-7","DOIUrl":null,"url":null,"abstract":"<p><p>Forecasting emergency medical service (EMS) call volumes is critical for resource allocation and planning. The development of many commercial and free software packages has made a variety of forecasting methods accessible. Practitioners, however, are left with little guidance on selecting the most appropriate method for their needs. Using 5 years of data from 3 cities in Alberta, we compute exponential smoothing and benchmark forecasts for 8-hour periods for each ambulance station catchment area and with a forecast horizon of two weeks-a spatio-temporal resolution appropriate for tactical planning. The methods that we consider differ on three spectra: the number and type of time-series components, whether forecasts are computed individually or jointly, and the way in which forecasts at a specific resolution are converted to forecasts at the resolution of interest. We find that it is important to include a weekly seasonal component when forecasting EMS demand. Multiplicative seasonality, however, shows no benefit over additive seasonality. Adding other time-series components (e.g., trend, ARMA errors, Box-Cox transformation) does not improve performance. Spatial resolutions of station catchment area and lower, and temporal resolution of 4-24 hours perform similarly. We adapt an existing hierarchical forecasting framework to a two-dimensional spatio-temporal hierarchy, but find that hierarchical reconciliation of forecasts does not improve performance at the forecast resolution of interest for tactical planning. Neither does jointly forecasting time series. We show that added complexity does not materially improve forecasting performance. The simple methods that we find perform well are easy to implement and interpret, making implementation in practice more likely. In a simulation study we alter the empirical weekly patterns and demonstrate how extreme differences between the weekly seasonality patterns of different regions cause hierarchically-reconciled bottom-up approaches to outperform top-down approaches.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"604-630"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-024-09690-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting emergency medical service (EMS) call volumes is critical for resource allocation and planning. The development of many commercial and free software packages has made a variety of forecasting methods accessible. Practitioners, however, are left with little guidance on selecting the most appropriate method for their needs. Using 5 years of data from 3 cities in Alberta, we compute exponential smoothing and benchmark forecasts for 8-hour periods for each ambulance station catchment area and with a forecast horizon of two weeks-a spatio-temporal resolution appropriate for tactical planning. The methods that we consider differ on three spectra: the number and type of time-series components, whether forecasts are computed individually or jointly, and the way in which forecasts at a specific resolution are converted to forecasts at the resolution of interest. We find that it is important to include a weekly seasonal component when forecasting EMS demand. Multiplicative seasonality, however, shows no benefit over additive seasonality. Adding other time-series components (e.g., trend, ARMA errors, Box-Cox transformation) does not improve performance. Spatial resolutions of station catchment area and lower, and temporal resolution of 4-24 hours perform similarly. We adapt an existing hierarchical forecasting framework to a two-dimensional spatio-temporal hierarchy, but find that hierarchical reconciliation of forecasts does not improve performance at the forecast resolution of interest for tactical planning. Neither does jointly forecasting time series. We show that added complexity does not materially improve forecasting performance. The simple methods that we find perform well are easy to implement and interpret, making implementation in practice more likely. In a simulation study we alter the empirical weekly patterns and demonstrate how extreme differences between the weekly seasonality patterns of different regions cause hierarchically-reconciled bottom-up approaches to outperform top-down approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持紧急医疗服务战术规划的预测:什么是重要的,什么是不重要的。
预测紧急医疗服务(EMS)的呼叫量对于资源分配和规划至关重要。许多商业和免费软件包的开发使人们可以使用各种预测方法。然而,从业人员在选择最适合自己的方法时却缺乏指导。利用艾伯塔省 3 个城市的 5 年数据,我们计算了每个救护站集水区 8 小时周期内的指数平滑预测和基准预测,预测范围为两周--适合战术规划的时空分辨率。我们所考虑的方法在三个方面存在差异:时间序列成分的数量和类型、预测是单独计算还是联合计算,以及将特定分辨率下的预测转换为相关分辨率下的预测的方式。我们发现,在预测 EMS 需求时,包含每周季节性成分非常重要。然而,乘法季节性并不比加法季节性更有优势。添加其他时间序列成分(如趋势、ARMA 误差、Box-Cox 变换)并不能提高性能。空间分辨率为站点集水区或更低,时间分辨率为 4-24 小时,两者表现类似。我们将现有的分级预测框架调整为二维时空分级,但发现在战术规划所需的预测分辨率下,分级调节预测并不能提高性能。联合预测时间序列也是如此。我们的研究表明,增加复杂性并不能显著提高预测性能。我们发现性能良好的简单方法易于实施和解释,因此更有可能在实践中实施。在一项模拟研究中,我们改变了经验周模式,并证明了不同地区周季节性模式之间的极端差异如何导致分层重合的自下而上方法优于自上而下方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
期刊最新文献
Road coverage as demand metric for ambulance allocation. Mechanistic modeling of social conditions in disease-prediction simulations via copulas and probabilistic graphical models: HIV case study. A study of "left against medical advice" emergency department patients: an optimized explainable artificial intelligence framework. Strategic placement of volunteer responder system defibrillators. The benefits (or detriments) of adapting to demand disruptions in a hospital pharmacy with supply chain disruptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1