Dongmin Huang, Yongshen Zeng, Yingen Zhu, Xiaoyan Song, Liping Pan, Jie Yang, Yanrong Wang, Hongzhou Lu, Wenjin Wang
{"title":"Camera-Based Respiratory Imaging System for Monitoring Infant Thoracoabdominal Patterns of Respiration.","authors":"Dongmin Huang, Yongshen Zeng, Yingen Zhu, Xiaoyan Song, Liping Pan, Jie Yang, Yanrong Wang, Hongzhou Lu, Wenjin Wang","doi":"10.1109/JBHI.2024.3482569","DOIUrl":null,"url":null,"abstract":"<p><p>Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3482569","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.