Camera-Based Respiratory Imaging System for Monitoring Infant Thoracoabdominal Patterns of Respiration.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-10-17 DOI:10.1109/JBHI.2024.3482569
Dongmin Huang, Yongshen Zeng, Yingen Zhu, Xiaoyan Song, Liping Pan, Jie Yang, Yanrong Wang, Hongzhou Lu, Wenjin Wang
{"title":"Camera-Based Respiratory Imaging System for Monitoring Infant Thoracoabdominal Patterns of Respiration.","authors":"Dongmin Huang, Yongshen Zeng, Yingen Zhu, Xiaoyan Song, Liping Pan, Jie Yang, Yanrong Wang, Hongzhou Lu, Wenjin Wang","doi":"10.1109/JBHI.2024.3482569","DOIUrl":null,"url":null,"abstract":"<p><p>Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3482569","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于摄像头的呼吸成像系统,用于监测婴儿胸腹呼吸模式。
现有的呼吸监测技术主要侧重于呼吸频率的测量,忽视了利用胸腹式呼吸模式进行婴儿肺部健康评估的潜力。为了弥补这一不足,我们利用摄像头传感器空间冗余的独特优势来分析婴儿胸腹呼吸运动。具体来说,我们提出了一种基于相机的呼吸成像(CRI)系统,该系统利用光流构建时空呼吸成像仪,用于比较婴儿胸腹呼吸运动,并采用深度学习算法识别婴儿腹部、胸腹同步和胸腹异步呼吸模式。为了缓解有限的临床训练数据和受试者差异性带来的挑战,我们在 CRI 中引入了一种新颖的多专家对比学习(MECL)策略。它通过反转和配对不同类数据来丰富训练样本,并通过多专家协作优化来提高同类数据的表征一致性。44 名婴儿的临床验证表明,MECL 的灵敏度和特异度分别达到了 70% 和 80.21%,验证了呼吸模式识别 CRI 的可行性。这项工作研究了一种基于视频评估婴儿胸腹呼吸模式的新方法,揭示了新生儿护理中视频健康监测的新价值流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing platform. Biomedical Information Integration via Adaptive Large Language Model Construction. BloodPatrol: Revolutionizing Blood Cancer Diagnosis - Advanced Real-Time Detection Leveraging Deep Learning & Cloud Technologies. EEG Detection and Prediction of Freezing of Gait in Parkinson's Disease Based on Spatiotemporal Coherent Modes. Functional Data Analysis of Hand Rotation for Open Surgical Suturing Skill Assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1