{"title":"Prior Visual-guided Self-supervised Learning Enables Color Vignetting Correction for High-throughput Microscopic Imaging.","authors":"Jianhang Wang, Tianyu Ma, Luhong Jin, Yunqi Zhu, Jiahui Yu, Feng Chen, Shujun Fu, Yingke Xu","doi":"10.1109/JBHI.2024.3471907","DOIUrl":null,"url":null,"abstract":"<p><p>Vignetting constitutes a prevalent optical degradation that significantly compromises the quality of biomedical microscopic imaging. However, a robust and efficient vignetting correction methodology in multi-channel microscopic images remains absent at present. In this paper, we take advantage of a prior knowledge about the homogeneity of microscopic images and radial attenuation property of vignetting to develop a self-supervised deep learning algorithm that achieves complex vignetting removal in color microscopic images. Our proposed method, vignetting correction lookup table (VCLUT), is trainable on both single and multiple images, which employs adversarial learning to effectively transfer good imaging conditions from the user visually defined central region of its own light field to the entire image. To illustrate its effectiveness, we performed individual correction experiments on data from five distinct biological specimens. The results demonstrate that VCLUT exhibits enhanced performance compared to classical methods. We further examined its performance as a multi-image-based approach on a pathological dataset, revealing its advantage over other stateof-the-art approaches in both qualitative and quantitative measurements. Moreover, it uniquely possesses the capacity for generalization across various levels of vignetting intensity and an ultra-fast model computation capability, rendering it well-suited for integration into high-throughput imaging pipelines of digital microscopy.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3471907","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Vignetting constitutes a prevalent optical degradation that significantly compromises the quality of biomedical microscopic imaging. However, a robust and efficient vignetting correction methodology in multi-channel microscopic images remains absent at present. In this paper, we take advantage of a prior knowledge about the homogeneity of microscopic images and radial attenuation property of vignetting to develop a self-supervised deep learning algorithm that achieves complex vignetting removal in color microscopic images. Our proposed method, vignetting correction lookup table (VCLUT), is trainable on both single and multiple images, which employs adversarial learning to effectively transfer good imaging conditions from the user visually defined central region of its own light field to the entire image. To illustrate its effectiveness, we performed individual correction experiments on data from five distinct biological specimens. The results demonstrate that VCLUT exhibits enhanced performance compared to classical methods. We further examined its performance as a multi-image-based approach on a pathological dataset, revealing its advantage over other stateof-the-art approaches in both qualitative and quantitative measurements. Moreover, it uniquely possesses the capacity for generalization across various levels of vignetting intensity and an ultra-fast model computation capability, rendering it well-suited for integration into high-throughput imaging pipelines of digital microscopy.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.