Investigating the Kappa Effect Elicited Through Concurrent Visual and Tactile Stimulation.

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2024-10-17 DOI:10.1109/TOH.2024.3482570
Yuri De Pra, Vincenzo Catrambone, Virginie van Wassenhove, Alessandro Moscatelli, Gaetano Valenza, Matteo Bianchi
{"title":"Investigating the Kappa Effect Elicited Through Concurrent Visual and Tactile Stimulation.","authors":"Yuri De Pra, Vincenzo Catrambone, Virginie van Wassenhove, Alessandro Moscatelli, Gaetano Valenza, Matteo Bianchi","doi":"10.1109/TOH.2024.3482570","DOIUrl":null,"url":null,"abstract":"<p><p>The experience of time and space in subjective perception is closely connected. The Kappa effect refers to the phenomenon where the perceived duration of the time interval between stimuli is influenced by the spatial distance between them. In this study, we aimed to explore the Kappa effect from a psychophysical perspective. We investigated participants' perception of temporal duration in the sub-second range by delivering visual and tactile inputs through wearable devices placed on both the palm and the forearm. We compared the impact of unimodal sensory stimulation, involving either visual or tactile stimuli, with different bimodal stimulation conditions. Our results revealed that the illusory effect on inter-stimulus duration perception can be observed in both unimodal conditions, although the distortions were significantly more pronounced in vision. In the multimodal stimulation condition, where visual stimuli were presented at non-equidistant spatial locations, the integration of tactile input did not reduce the Kappa effect, regardless of the spatial location of the tactile stimuli. However, when the visual stimuli were equidistant in space, regardless of the spatial location of the tactile stimuli, the Kappa effect disappeared. These results can shed light on the effect played by multimodality on the perception of space and time.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3482570","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

The experience of time and space in subjective perception is closely connected. The Kappa effect refers to the phenomenon where the perceived duration of the time interval between stimuli is influenced by the spatial distance between them. In this study, we aimed to explore the Kappa effect from a psychophysical perspective. We investigated participants' perception of temporal duration in the sub-second range by delivering visual and tactile inputs through wearable devices placed on both the palm and the forearm. We compared the impact of unimodal sensory stimulation, involving either visual or tactile stimuli, with different bimodal stimulation conditions. Our results revealed that the illusory effect on inter-stimulus duration perception can be observed in both unimodal conditions, although the distortions were significantly more pronounced in vision. In the multimodal stimulation condition, where visual stimuli were presented at non-equidistant spatial locations, the integration of tactile input did not reduce the Kappa effect, regardless of the spatial location of the tactile stimuli. However, when the visual stimuli were equidistant in space, regardless of the spatial location of the tactile stimuli, the Kappa effect disappeared. These results can shed light on the effect played by multimodality on the perception of space and time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究通过同时视觉和触觉刺激引发的卡帕效应
主观感知中对时间和空间的体验是紧密相连的。卡帕效应(Kappa effect)指的是刺激物之间的时间间隔长短受刺激物之间空间距离影响的现象。在本研究中,我们旨在从心理物理学的角度探讨卡帕效应。我们通过放置在手掌和前臂上的可穿戴设备提供视觉和触觉输入,调查了参与者对亚秒级时间长度的感知。我们比较了单模态感官刺激(包括视觉或触觉刺激)与不同双模态刺激条件的影响。我们的结果表明,在两种单模态刺激条件下都能观察到对刺激间持续时间感知的幻觉效应,但视觉刺激的失真明显更明显。在多模态刺激条件下,视觉刺激呈现在非相距较远的空间位置,无论触觉刺激的空间位置如何,触觉输入的整合都不会降低卡帕效应。然而,当视觉刺激在空间上距离相等时,无论触觉刺激的空间位置如何,卡帕效应都消失了。这些结果可以说明多模态对空间和时间感知的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
A Novel Ungrounded Haptic Device for Generation and Orientation of Force and Torque Feedbacks. HM-Array: A Novel Haptic Magnetism-based Leader-follower Platform for Minimally Invasive Robotic Surgery. Perceptual Constancy in the Speed Dependence of Friction During Active Tactile Exploration. A Generalized Tracking Wall Approach to the Haptic Simulation of Tip Forces During Needle Insertion. A Visuo-Haptic System for Nodule Detection Training: Insights from EEG and behavioral analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1