Exploring the Mechanism of Ferroptosis Induction by Sappanone A in Cancer: Insights into the Mitochondrial Dysfunction Mediated by NRF2/xCT/GPX4 Axis.

IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Sciences Pub Date : 2024-09-23 eCollection Date: 2024-01-01 DOI:10.7150/ijbs.96748
Junyan Wang, Haowen Zhuang, Xiaocui Yang, Zhijiang Guo, Kainan Zhou, Nanyang Liu, Yang An, Ye Chen, Zhongzheng Zhang, Mengyuan Wang, Jinhong Chen, Chun Li, Xing Chang
{"title":"Exploring the Mechanism of Ferroptosis Induction by Sappanone A in Cancer: Insights into the Mitochondrial Dysfunction Mediated by NRF2/xCT/GPX4 Axis.","authors":"Junyan Wang, Haowen Zhuang, Xiaocui Yang, Zhijiang Guo, Kainan Zhou, Nanyang Liu, Yang An, Ye Chen, Zhongzheng Zhang, Mengyuan Wang, Jinhong Chen, Chun Li, Xing Chang","doi":"10.7150/ijbs.96748","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, encompasses squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Compared to small cell lung cancer, NSCLC cells grow and divide more slowly, and their metastasis occurs at a later stage. Currently, chemotherapy is the primary treatment for this disease. Sappanone A (SA) is a flavonoid compound extracted from the plant Caesalpinia sappan, known for its antitumor, redox-regulating, and anti-inflammatory properties. Recent studies have investigated the interaction of SA with mitochondrial pathways in regulating cell death through the Nrf-2/GPX-4/xCT axis. This study specifically explores the mechanism by which SA affects mitochondrial morphology and structure through the regulation of mitophagy and mitochondrial biogenesis in tumor cells. The study primarily utilizes second-generation transcriptomic sequencing data and molecular docking techniques to elucidate the role of SA in regulating programmed cell death in tumor cells. The omics results indicate that SA treatment significantly targets genes involved in oxidative phosphorylation, mitophagy, mitochondrial dynamics, and oxidative stress. Further findings confirmed that the Nrf-2/GPX4/xCT pathway serves as a crucial target of SA in the treatment of NSCLC. Knockdown of Nrf-2 (si-Nrf-2) and Nrf-2 overexpression (ad-Nrf-2) were shown to modulate the therapeutic efficacy of SA to varying degrees. Additionally, modifications to the GPX4/xCT genes significantly affected the regulatory effects of SA on mitochondrial autophagy, biogenesis, and energy metabolism. These regulatory mechanisms may be mediated through the caspase pathway and ferroptosis-related signaling. Molecular biology experiments have demonstrated that SA intervention further inhibits the phosphorylation of FUNDC1 at Tyr18 and downregulates TOM20 expression. SA treatment was found to reduce the expression of PGC1α, Nrf-1, and Tfam, resulting in a decrease in mitochondrial respiration and energy metabolism. Overexpression of Nrf-2 was shown to counteract the regulatory effects of SA on mitophagy and mitochondrial biogenesis. Confocal microscopy experiments further revealed that SA treatment increases mitochondrial fragmentation, subsequently inducing mitochondrial pathway-mediated programmed cell death. However, genetic modification of the Nrf-2/GPX4/xCT pathway significantly altered the regulatory effects of SA on tumor cells. In conclusion, SA has been identified as a promising therapeutic agent for NSCLC. The mitochondrial pathway-mediated apoptosis and ferroptosis may represent key mechanisms in regulating tumor cell death. Targeting the Nrf-2/GPX-4/xCT axis offers a novel therapeutic approach for maintaining mitochondrial homeostasis within the cellular microenvironment.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.96748","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, encompasses squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Compared to small cell lung cancer, NSCLC cells grow and divide more slowly, and their metastasis occurs at a later stage. Currently, chemotherapy is the primary treatment for this disease. Sappanone A (SA) is a flavonoid compound extracted from the plant Caesalpinia sappan, known for its antitumor, redox-regulating, and anti-inflammatory properties. Recent studies have investigated the interaction of SA with mitochondrial pathways in regulating cell death through the Nrf-2/GPX-4/xCT axis. This study specifically explores the mechanism by which SA affects mitochondrial morphology and structure through the regulation of mitophagy and mitochondrial biogenesis in tumor cells. The study primarily utilizes second-generation transcriptomic sequencing data and molecular docking techniques to elucidate the role of SA in regulating programmed cell death in tumor cells. The omics results indicate that SA treatment significantly targets genes involved in oxidative phosphorylation, mitophagy, mitochondrial dynamics, and oxidative stress. Further findings confirmed that the Nrf-2/GPX4/xCT pathway serves as a crucial target of SA in the treatment of NSCLC. Knockdown of Nrf-2 (si-Nrf-2) and Nrf-2 overexpression (ad-Nrf-2) were shown to modulate the therapeutic efficacy of SA to varying degrees. Additionally, modifications to the GPX4/xCT genes significantly affected the regulatory effects of SA on mitochondrial autophagy, biogenesis, and energy metabolism. These regulatory mechanisms may be mediated through the caspase pathway and ferroptosis-related signaling. Molecular biology experiments have demonstrated that SA intervention further inhibits the phosphorylation of FUNDC1 at Tyr18 and downregulates TOM20 expression. SA treatment was found to reduce the expression of PGC1α, Nrf-1, and Tfam, resulting in a decrease in mitochondrial respiration and energy metabolism. Overexpression of Nrf-2 was shown to counteract the regulatory effects of SA on mitophagy and mitochondrial biogenesis. Confocal microscopy experiments further revealed that SA treatment increases mitochondrial fragmentation, subsequently inducing mitochondrial pathway-mediated programmed cell death. However, genetic modification of the Nrf-2/GPX4/xCT pathway significantly altered the regulatory effects of SA on tumor cells. In conclusion, SA has been identified as a promising therapeutic agent for NSCLC. The mitochondrial pathway-mediated apoptosis and ferroptosis may represent key mechanisms in regulating tumor cell death. Targeting the Nrf-2/GPX-4/xCT axis offers a novel therapeutic approach for maintaining mitochondrial homeostasis within the cellular microenvironment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索萨帕酮 A 在癌症中诱导铁氧化的机制:洞察由 NRF2/xCT/GPX4 轴介导的线粒体功能障碍
非小细胞肺癌(NSCLC)是肺癌的一个主要亚型,包括鳞状细胞癌、腺癌和大细胞癌。与小细胞肺癌相比,NSCLC 细胞的生长和分裂速度更慢,转移发生的时间也更晚。目前,化疗是治疗这种疾病的主要方法。Sappanone A(SA)是从植物 Caesalpinia sappan 中提取的一种类黄酮化合物,以其抗肿瘤、氧化还原调节和抗炎特性而闻名。最近的研究调查了 SA 在通过 Nrf-2/GPX-4/xCT 轴调节细胞死亡过程中与线粒体途径的相互作用。本研究特别探讨了南澳大利亚通过调控肿瘤细胞的有丝分裂吞噬和线粒体生物生成影响线粒体形态和结构的机制。研究主要利用第二代转录组测序数据和分子对接技术来阐明SA在调控肿瘤细胞程序性细胞死亡中的作用。omics研究结果表明,SA处理能显著靶向参与氧化磷酸化、有丝分裂吞噬、线粒体动力学和氧化应激的基因。进一步的研究结果证实,Nrf-2/GPX4/xCT通路是SA治疗NSCLC的关键靶点。研究表明,敲除Nrf-2(si-Nrf-2)和Nrf-2过表达(ad-Nrf-2)在不同程度上调节了SA的疗效。此外,对 GPX4/xCT 基因的修饰会显著影响 SA 对线粒体自噬、生物生成和能量代谢的调节作用。这些调控机制可能是通过 Caspase 通路和铁蛋白沉积相关信号传导介导的。分子生物学实验证明,SA 的干预进一步抑制了 FUNDC1 在 Tyr18 处的磷酸化,并下调了 TOM20 的表达。研究发现,SA 处理会降低 PGC1α、Nrf-1 和 Tfam 的表达,导致线粒体呼吸和能量代谢下降。研究表明,过量表达 Nrf-2 可以抵消 SA 对有丝分裂吞噬和线粒体生物生成的调节作用。共聚焦显微镜实验进一步发现,SA 处理会增加线粒体碎片,进而诱导线粒体途径介导的细胞程序性死亡。然而,对Nrf-2/GPX4/xCT通路的基因修饰会显著改变SA对肿瘤细胞的调控作用。总之,SA已被确定为一种治疗NSCLC的有前途的药物。线粒体途径介导的凋亡和铁凋亡可能是调控肿瘤细胞死亡的关键机制。靶向 Nrf-2/GPX-4/xCT 轴为维持细胞微环境中的线粒体平衡提供了一种新的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Sciences
International Journal of Biological Sciences 生物-生化与分子生物学
CiteScore
16.90
自引率
1.10%
发文量
413
审稿时长
1 months
期刊介绍: The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.
期刊最新文献
Targeting mitochondria by lipid-selenium conjugate drug results in malate/fumarate exhaustion and induces mitophagy-mediated necroptosis suppression. Mechanistic study of celastrol-mediated inhibition of proinflammatory activation of macrophages in IgA nephropathy via down-regulating ECM1. Micro(nano)plastics: an Emerging Burden for Human Health. New insights into non-small cell lung cancer bone metastasis: mechanisms and therapies. SUMOylation modification of HNRNPK at the K422 site promotes invasion in glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1