Filomeno Sánchez Rodríguez , Adam J. Simpkin , Grzegorz Chojnowski , Ronan M. Keegan , Daniel J. Rigden
{"title":"Using deep-learning predictions reveals a large number of register errors in PDB depositions","authors":"Filomeno Sánchez Rodríguez , Adam J. Simpkin , Grzegorz Chojnowski , Ronan M. Keegan , Daniel J. Rigden","doi":"10.1107/S2052252524009114","DOIUrl":null,"url":null,"abstract":"<div><div>A novel structure-validation method is applied to PDB depositions at 3–5 Å resolution, revealing large numbers of putative register errors.</div></div><div><div>The accuracy of the information in the Protein Data Bank (PDB) is of great importance for the myriad downstream applications that make use of protein structural information. Despite best efforts, the occasional introduction of errors is inevitable, especially where the experimental data are of limited resolution. A novel protein structure validation approach based on spotting inconsistencies between the residue contacts and distances observed in a structural model and those computationally predicted by methods such as <em>AlphaFold</em>2 has previously been established. It is particularly well suited to the detection of register errors. Importantly, this new approach is orthogonal to traditional methods based on stereochemistry or map–model agreement, and is resolution independent. Here, thousands of likely register errors are identified by scanning 3–5 Å resolution structures in the PDB. Unlike most methods, the application of this approach yields suggested corrections to the register of affected regions, which it is shown, even by limited implementation, lead to improved refinement statistics in the vast majority of cases. A few limitations and confounding factors such as fold-switching proteins are characterized, but this approach is expected to have broad application in spotting potential issues in current accessions and, through its implementation and distribution in <em>CCP</em>4, helping to ensure the accuracy of future depositions.</div></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 6","pages":"Pages 938-950"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533997/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252524000927","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel structure-validation method is applied to PDB depositions at 3–5 Å resolution, revealing large numbers of putative register errors.
The accuracy of the information in the Protein Data Bank (PDB) is of great importance for the myriad downstream applications that make use of protein structural information. Despite best efforts, the occasional introduction of errors is inevitable, especially where the experimental data are of limited resolution. A novel protein structure validation approach based on spotting inconsistencies between the residue contacts and distances observed in a structural model and those computationally predicted by methods such as AlphaFold2 has previously been established. It is particularly well suited to the detection of register errors. Importantly, this new approach is orthogonal to traditional methods based on stereochemistry or map–model agreement, and is resolution independent. Here, thousands of likely register errors are identified by scanning 3–5 Å resolution structures in the PDB. Unlike most methods, the application of this approach yields suggested corrections to the register of affected regions, which it is shown, even by limited implementation, lead to improved refinement statistics in the vast majority of cases. A few limitations and confounding factors such as fold-switching proteins are characterized, but this approach is expected to have broad application in spotting potential issues in current accessions and, through its implementation and distribution in CCP4, helping to ensure the accuracy of future depositions.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.