Toxicity Adaptive Lists Design: A Practical Design for Phase I Drug Combination Trials in Oncology.

IF 5.3 2区 医学 Q1 ONCOLOGY JCO precision oncology Pub Date : 2024-10-01 Epub Date: 2024-10-21 DOI:10.1200/PO.24.00275
Massimiliano Russo, Francesco Mariani, James M Cleary, Geoffrey I Shapiro, Gregory M Coté, Lorenzo Trippa
{"title":"Toxicity Adaptive Lists Design: A Practical Design for Phase I Drug Combination Trials in Oncology.","authors":"Massimiliano Russo, Francesco Mariani, James M Cleary, Geoffrey I Shapiro, Gregory M Coté, Lorenzo Trippa","doi":"10.1200/PO.24.00275","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We introduce a novel algorithmic approach to design phase I trials for oncology drug combinations.</p><p><strong>Methods: </strong>Our proposed Toxicity Adaptive Lists Design (TALE) is straightforward to implement, requiring the prespecification of a small number of parameters that define rules governing dose escalation, de-escalation, or reassessment of previously explored dose levels. These rules effectively regulate dose exploration and control the number of toxicities. A key feature of TALE is the possibility of simultaneous assignment of multiple-dose combinations that are deemed safe by previously accrued data.</p><p><strong>Results: </strong>A numerical study shows that TALE shares comparable operative characteristics, in terms of identification of the maximum tolerated dose (MTD), to alternative approaches such as the Bayesian optimal interval design, the COPULA, the product of independent beta probabilities escalation, and the continual reassessment method for partial ordering designs while reducing the risk of overdosing patients.</p><p><strong>Conclusion: </strong>The proposed TALE design provides a favorable balance between maintaining patient safety and accurately identifying the MTD. To facilitate the use of TALE, we provide a user-friendly R Shiny application and an R package for computing relevant operating characteristics, such as the risk of assigning highly toxic dose combinations.</p>","PeriodicalId":14797,"journal":{"name":"JCO precision oncology","volume":"8 ","pages":"e2400275"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO precision oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/PO.24.00275","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We introduce a novel algorithmic approach to design phase I trials for oncology drug combinations.

Methods: Our proposed Toxicity Adaptive Lists Design (TALE) is straightforward to implement, requiring the prespecification of a small number of parameters that define rules governing dose escalation, de-escalation, or reassessment of previously explored dose levels. These rules effectively regulate dose exploration and control the number of toxicities. A key feature of TALE is the possibility of simultaneous assignment of multiple-dose combinations that are deemed safe by previously accrued data.

Results: A numerical study shows that TALE shares comparable operative characteristics, in terms of identification of the maximum tolerated dose (MTD), to alternative approaches such as the Bayesian optimal interval design, the COPULA, the product of independent beta probabilities escalation, and the continual reassessment method for partial ordering designs while reducing the risk of overdosing patients.

Conclusion: The proposed TALE design provides a favorable balance between maintaining patient safety and accurately identifying the MTD. To facilitate the use of TALE, we provide a user-friendly R Shiny application and an R package for computing relevant operating characteristics, such as the risk of assigning highly toxic dose combinations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毒性适应性列表设计:肿瘤学 I 期联合用药试验的实用设计。
目的:我们介绍了一种新的算法方法,用于设计肿瘤药物组合的 I 期试验:我们提出的毒性自适应列表设计(TALE)简单易行,只需预先设定少量参数,这些参数定义了剂量升级、降级或重新评估先前探索过的剂量水平的规则。这些规则可有效调节剂量探索并控制毒性反应的数量。TALE 的一个主要特点是可以同时分配先前积累的数据认为安全的多种剂量组合:一项数值研究表明,在确定最大耐受剂量(MTD)方面,TALE 与贝叶斯最优间隔设计、COPULA、独立贝塔概率升级乘积、部分排序设计的持续再评估法等替代方法具有相似的操作特性,同时降低了患者用药过量的风险:结论:建议的 TALE 设计在维护患者安全和准确确定 MTD 之间取得了良好的平衡。为了方便使用 TALE,我们提供了一个用户友好的 R Shiny 应用程序和一个 R 软件包,用于计算相关的运行特征,如分配高毒性剂量组合的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
4.30%
发文量
363
期刊最新文献
DNA Damage Response Alterations Predict for Neoadjuvant Chemotherapy Sensitivity in Muscle-Invasive Bladder Cancer: A Correlative Analysis of the SWOG S1314 Trial. Erratum: Tumor Characteristics Associated With Preoperatively Detectable Tumor-Informed Circulating Tumor DNA in Patients With Renal Masses Suspicious for Renal Cell Carcinoma. DNA Methylation Classes of Stage II and III Primary Melanomas and Their Clinical and Prognostic Significance. KRASG12D-Mutated Metastatic Colorectal Cancer: Clinical, Molecular, Immunologic, and Prognostic Features of a New Emerging Targeted Alteration. Neo-wt-RAS in ctDNA: Is It Worth Using Anti-EGFR Therapies?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1