{"title":"Role of KLF4 and SIAT7A interaction accelerates myocardial hypertrophy induced by Ang II","authors":"Qiying Yao, Xinrui Hu, Tiantian Bian, Qing Zhang, Zhao Xue, Yuesheng Lv, Shupeng Ren, Yue Chen, Dongmei Zhang, Liang Chen","doi":"10.1111/jcmm.70144","DOIUrl":null,"url":null,"abstract":"<p>Sialylation catalysed by sialyltransferase 7A (SIAT7A) plays a role in the development of cardiac hypertrophy. However, the regulatory mechanisms upstream of SIAT7A in this context remain poorly elucidated. Previous study demonstrated that KLF4 activates the <i>SIAT7A</i> gene in ischemic myocardium by binding to its promoter region. Nevertheless, the potential involvement of KLF4 in regulating SIAT7A expression in Ang II-induced hypertrophic cardiomyocytes remains uncertain. This study seeks to deepen the underlying mechanisms of the KLF4 and SIAT7A interaction in the progression of Ang II-induced cardiac hypertrophy. The results showed a concurrent increase in SIAT7A and KLF4 levels in hypertrophic myocardium of essential hypertension patients and in hypertrophic cardiomyocytes stimulated by Ang II. In vitro experiments revealed that reducing KLF4 levels led to a decrease in both SIAT7A synthesis and Sialyl-Tn antigen expression, consequently inhibiting Ang II-induced cardiomyocyte hypertrophy. Intriguingly, reducing SIAT7A levels also resulted in decreased KLF4 expression and suppression cardiomyocyte hypertrophy. Consistent with this, elevating SIAT7A levels increased KLF4 expression and exacerbated cardiomyocyte hypertrophy in both in vivo and in vitro experiments. Additionally, a time-course analysis indicated that KLF4 expression preceded that of SIAT7A. Luciferase reporter assays further confirmed that modulating <i>SIAT7A</i> levels directly influenced the transcriptional activity of <i>KLF4</i> in cardiomyocytes. In summary, KLF4 expression is upregulated in cardiomyocytes treated with Ang II, which subsequently induces the expression of SIAT7A. The elevated levels of SIAT7A, in turn, enhance the transcription of <i>KLF4</i>. These findings suggest a positive feedback loop between KLF4 and SIAT7A-Sialyl-Tn, ultimately promoting Ang II-induced cardiac hypertrophy.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 20","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sialylation catalysed by sialyltransferase 7A (SIAT7A) plays a role in the development of cardiac hypertrophy. However, the regulatory mechanisms upstream of SIAT7A in this context remain poorly elucidated. Previous study demonstrated that KLF4 activates the SIAT7A gene in ischemic myocardium by binding to its promoter region. Nevertheless, the potential involvement of KLF4 in regulating SIAT7A expression in Ang II-induced hypertrophic cardiomyocytes remains uncertain. This study seeks to deepen the underlying mechanisms of the KLF4 and SIAT7A interaction in the progression of Ang II-induced cardiac hypertrophy. The results showed a concurrent increase in SIAT7A and KLF4 levels in hypertrophic myocardium of essential hypertension patients and in hypertrophic cardiomyocytes stimulated by Ang II. In vitro experiments revealed that reducing KLF4 levels led to a decrease in both SIAT7A synthesis and Sialyl-Tn antigen expression, consequently inhibiting Ang II-induced cardiomyocyte hypertrophy. Intriguingly, reducing SIAT7A levels also resulted in decreased KLF4 expression and suppression cardiomyocyte hypertrophy. Consistent with this, elevating SIAT7A levels increased KLF4 expression and exacerbated cardiomyocyte hypertrophy in both in vivo and in vitro experiments. Additionally, a time-course analysis indicated that KLF4 expression preceded that of SIAT7A. Luciferase reporter assays further confirmed that modulating SIAT7A levels directly influenced the transcriptional activity of KLF4 in cardiomyocytes. In summary, KLF4 expression is upregulated in cardiomyocytes treated with Ang II, which subsequently induces the expression of SIAT7A. The elevated levels of SIAT7A, in turn, enhance the transcription of KLF4. These findings suggest a positive feedback loop between KLF4 and SIAT7A-Sialyl-Tn, ultimately promoting Ang II-induced cardiac hypertrophy.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.