{"title":"Effect of current collector on the coupled electro-chemo-mechanical performance of graphite electrodes in LiBs.","authors":"Xiaolin Li, Jiahui Liu, Honghui Gu, Hainan Jiang, Linlin Song, Yaolong He, Dawei Li","doi":"10.1063/5.0233210","DOIUrl":null,"url":null,"abstract":"<p><p>The current collector, one of the main components in the manufacture of composite electrodes, is mainly used to enhance the mechanical stability and improve the performance and cycle performance of the electrodes. During the electrochemical reaction, the lithium diffusion can induce compressive stress and affect the mechanical performance, lifespan, and performance of batteries. Therefore, this study analyzed the influence of copper foil on the mechanical response and degradation performance of electrodes. In addition, a mathematical model was developed to analyze the effect of copper foil on the stress-strain behavior of the electrodes. The results indicated that the stress and modulus of the graphite electrodes have a non-linear increase with the lithiation process. Based on those findings, utilizing a thinner and more compliant current collector could effectively mitigate the in-plane strain and the stress within electrodes. Thus, developing a thinner and softer copper foil could simultaneously enhance the mechanical properties and specific density of composite electrodes for the next-generation LiBs.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0233210","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current collector, one of the main components in the manufacture of composite electrodes, is mainly used to enhance the mechanical stability and improve the performance and cycle performance of the electrodes. During the electrochemical reaction, the lithium diffusion can induce compressive stress and affect the mechanical performance, lifespan, and performance of batteries. Therefore, this study analyzed the influence of copper foil on the mechanical response and degradation performance of electrodes. In addition, a mathematical model was developed to analyze the effect of copper foil on the stress-strain behavior of the electrodes. The results indicated that the stress and modulus of the graphite electrodes have a non-linear increase with the lithiation process. Based on those findings, utilizing a thinner and more compliant current collector could effectively mitigate the in-plane strain and the stress within electrodes. Thus, developing a thinner and softer copper foil could simultaneously enhance the mechanical properties and specific density of composite electrodes for the next-generation LiBs.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.