Influence of the rigidity of the backbone and arms on the dynamical and conformational properties of the comb polymer in shear flow.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-10-21 DOI:10.1063/5.0230750
Xinbiao Huang, Xiaohui Wen, Christos N Likos, Deyin Wang, Linli He, Hai Li, Rundong Li
{"title":"Influence of the rigidity of the backbone and arms on the dynamical and conformational properties of the comb polymer in shear flow.","authors":"Xinbiao Huang, Xiaohui Wen, Christos N Likos, Deyin Wang, Linli He, Hai Li, Rundong Li","doi":"10.1063/5.0230750","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamical and conformational properties of the comb polymer with various rigidities of the backbone and arms in steady shear flow are studied by using a hybrid mesoscale simulation approach that combines multiparticle collision dynamics with standard molecular dynamics. First, during the process of the comb polymer undergoing periodic tumbling motion, we find that the rigidity of the arms always promotes the tumbling motion of the comb polymer, but the rigidity of the backbone shifts from hindering to promoting it with increasing the rigidity of the arms. In addition, the comb polymer transitions from vorticity tumbling to gradient tumbling with the increase in shear rate. Second, the range of variation of the end-to-end distance of the backbone and the average end-to-end distance of the arms increases with the increase in the rigidity of the arms and backbone, respectively, and the range of both changes grows with the increase in shear rate. Furthermore, as the rigidity increases, the moldability of the comb polymer decreases and the orientation angle of the comb polymer increases.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0230750","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamical and conformational properties of the comb polymer with various rigidities of the backbone and arms in steady shear flow are studied by using a hybrid mesoscale simulation approach that combines multiparticle collision dynamics with standard molecular dynamics. First, during the process of the comb polymer undergoing periodic tumbling motion, we find that the rigidity of the arms always promotes the tumbling motion of the comb polymer, but the rigidity of the backbone shifts from hindering to promoting it with increasing the rigidity of the arms. In addition, the comb polymer transitions from vorticity tumbling to gradient tumbling with the increase in shear rate. Second, the range of variation of the end-to-end distance of the backbone and the average end-to-end distance of the arms increases with the increase in the rigidity of the arms and backbone, respectively, and the range of both changes grows with the increase in shear rate. Furthermore, as the rigidity increases, the moldability of the comb polymer decreases and the orientation angle of the comb polymer increases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨架和臂的刚性对梳状聚合物在剪切流中的动态和构象特性的影响。
采用多粒子碰撞动力学与标准分子动力学相结合的混合中尺度模拟方法,研究了在稳定剪切流中具有不同骨干和臂刚性的梳状聚合物的动力学和构象特性。首先,在梳状聚合物进行周期性翻滚运动的过程中,我们发现臂的刚度始终促进梳状聚合物的翻滚运动,但随着臂刚度的增加,骨架的刚度从阻碍翻滚运动转变为促进翻滚运动。此外,随着剪切速率的增加,梳状聚合物从涡度翻滚过渡到梯度翻滚。其次,骨架的端到端距离和臂的平均端到端距离的变化范围分别随着臂和骨架刚性的增加而增大,这两种变化的范围随着剪切速率的增加而增大。此外,随着刚性的增加,梳状聚合物的成型性降低,梳状聚合物的取向角增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A comprehensive molecular dynamics simulation of plastic and liquid succinonitrile: Structural, dynamic, and dielectric properties. A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics. A simple approach to rotationally invariant machine learning of a vector quantity. Ab initio calculations of molecular double Auger decay rates. Application of graph neural network in computational heterogeneous catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1