Origin of unique electronic structures of single-atom alloys unraveled by interpretable deep learning.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-10-28 DOI:10.1063/5.0232141
Yang Huang, Shih-Han Wang, Luke E K Achenie, Kamal Choudhary, Hongliang Xin
{"title":"Origin of unique electronic structures of single-atom alloys unraveled by interpretable deep learning.","authors":"Yang Huang, Shih-Han Wang, Luke E K Achenie, Kamal Choudhary, Hongliang Xin","doi":"10.1063/5.0232141","DOIUrl":null,"url":null,"abstract":"<p><p>We uncover the origin of unique electronic structures of single-atom alloys (SAAs) by interpretable deep learning. The approach integrates tight-binding moment theory with graph neural networks to accurately describe the local electronic structure of transition and noble metal sites upon perturbation. We emphasize the complex interplay of interatomic orbital coupling and on-site orbital resonance, which shapes the d-band characteristics of an active site, shedding light on the origin of free-atom-like d-states that are often observed in SAAs involving d10 metal hosts. This theory-infused neural network approach significantly enhances our understanding of the electronic properties of single-site catalytic materials beyond traditional theories.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0232141","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We uncover the origin of unique electronic structures of single-atom alloys (SAAs) by interpretable deep learning. The approach integrates tight-binding moment theory with graph neural networks to accurately describe the local electronic structure of transition and noble metal sites upon perturbation. We emphasize the complex interplay of interatomic orbital coupling and on-site orbital resonance, which shapes the d-band characteristics of an active site, shedding light on the origin of free-atom-like d-states that are often observed in SAAs involving d10 metal hosts. This theory-infused neural network approach significantly enhances our understanding of the electronic properties of single-site catalytic materials beyond traditional theories.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可解释深度学习揭示单原子合金独特电子结构的起源
我们通过可解释的深度学习揭示了单原子合金(SAA)独特电子结构的起源。这种方法将紧密结合力矩理论与图神经网络相结合,准确地描述了过渡金属和贵金属位点在受到扰动时的局部电子结构。我们强调原子轨道间耦合和现场轨道共振的复杂相互作用,它们塑造了活性位点的 d 波段特性,揭示了在涉及 d10 金属宿主的 SAA 中经常观察到的自由原子样 d 态的起源。这种注入理论的神经网络方法大大增强了我们对单位催化材料电子特性的理解,超越了传统理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A comprehensive molecular dynamics simulation of plastic and liquid succinonitrile: Structural, dynamic, and dielectric properties. A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics. A simple approach to rotationally invariant machine learning of a vector quantity. Ab initio calculations of molecular double Auger decay rates. Application of graph neural network in computational heterogeneous catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1