Lifeng Wang, Ling Cai, Xiong He, Fanli Yang, Jie Chen, Lizhi Yi, Min Liu, Yunli Xu, Zhengcai Xia, Liqing Pan
{"title":"Surface weak ferromagnet coupling induced giant room-temperature spontaneous exchange bias in antiferromagnet Fe3BO6 polycrystals.","authors":"Lifeng Wang, Ling Cai, Xiong He, Fanli Yang, Jie Chen, Lizhi Yi, Min Liu, Yunli Xu, Zhengcai Xia, Liqing Pan","doi":"10.1063/5.0225163","DOIUrl":null,"url":null,"abstract":"<p><p>The spontaneous exchange bias effect (SEB) has wide application prospects in information storage technologies. In this study, nanoscale raw materials were used to fabricate antiferromagnetic Fe3BO6 polycrystals. The obtained Fe3BO6 exhibited a large SEB effect, where the value of the spontaneous exchange bias field at room temperature was as large as ∼4234 Oe. The room-temperature training effect, temperature-dependence, and maximum field-dependence of the HSEB were investigated. We propose that this giant SEB originates from the exchange-coupling interactions between the weak ferromagnetic surface state and the bulk antiferromagnetic state. The theoretical analysis results were further verified by comparing the magnetic properties of the Fe3BO6 with relatively low crystallinity. The results of this investigation will help find promising candidate materials for devices based on the SEB effect.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0225163","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The spontaneous exchange bias effect (SEB) has wide application prospects in information storage technologies. In this study, nanoscale raw materials were used to fabricate antiferromagnetic Fe3BO6 polycrystals. The obtained Fe3BO6 exhibited a large SEB effect, where the value of the spontaneous exchange bias field at room temperature was as large as ∼4234 Oe. The room-temperature training effect, temperature-dependence, and maximum field-dependence of the HSEB were investigated. We propose that this giant SEB originates from the exchange-coupling interactions between the weak ferromagnetic surface state and the bulk antiferromagnetic state. The theoretical analysis results were further verified by comparing the magnetic properties of the Fe3BO6 with relatively low crystallinity. The results of this investigation will help find promising candidate materials for devices based on the SEB effect.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.