Surface weak ferromagnet coupling induced giant room-temperature spontaneous exchange bias in antiferromagnet Fe3BO6 polycrystals.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-10-21 DOI:10.1063/5.0225163
Lifeng Wang, Ling Cai, Xiong He, Fanli Yang, Jie Chen, Lizhi Yi, Min Liu, Yunli Xu, Zhengcai Xia, Liqing Pan
{"title":"Surface weak ferromagnet coupling induced giant room-temperature spontaneous exchange bias in antiferromagnet Fe3BO6 polycrystals.","authors":"Lifeng Wang, Ling Cai, Xiong He, Fanli Yang, Jie Chen, Lizhi Yi, Min Liu, Yunli Xu, Zhengcai Xia, Liqing Pan","doi":"10.1063/5.0225163","DOIUrl":null,"url":null,"abstract":"<p><p>The spontaneous exchange bias effect (SEB) has wide application prospects in information storage technologies. In this study, nanoscale raw materials were used to fabricate antiferromagnetic Fe3BO6 polycrystals. The obtained Fe3BO6 exhibited a large SEB effect, where the value of the spontaneous exchange bias field at room temperature was as large as ∼4234 Oe. The room-temperature training effect, temperature-dependence, and maximum field-dependence of the HSEB were investigated. We propose that this giant SEB originates from the exchange-coupling interactions between the weak ferromagnetic surface state and the bulk antiferromagnetic state. The theoretical analysis results were further verified by comparing the magnetic properties of the Fe3BO6 with relatively low crystallinity. The results of this investigation will help find promising candidate materials for devices based on the SEB effect.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0225163","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The spontaneous exchange bias effect (SEB) has wide application prospects in information storage technologies. In this study, nanoscale raw materials were used to fabricate antiferromagnetic Fe3BO6 polycrystals. The obtained Fe3BO6 exhibited a large SEB effect, where the value of the spontaneous exchange bias field at room temperature was as large as ∼4234 Oe. The room-temperature training effect, temperature-dependence, and maximum field-dependence of the HSEB were investigated. We propose that this giant SEB originates from the exchange-coupling interactions between the weak ferromagnetic surface state and the bulk antiferromagnetic state. The theoretical analysis results were further verified by comparing the magnetic properties of the Fe3BO6 with relatively low crystallinity. The results of this investigation will help find promising candidate materials for devices based on the SEB effect.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反铁磁体 Fe3BO6 多晶体中表面弱铁磁耦合诱导的巨型室温自发交换偏置。
自发交换偏置效应(SEB)在信息存储技术中具有广泛的应用前景。本研究使用纳米级原材料制备了反铁磁性 Fe3BO6 多晶体。所获得的 Fe3BO6 具有很大的 SEB 效应,室温下的自发交换偏置场值高达 ∼4234 Oe。我们研究了 HSEB 的室温训练效应、温度依赖性和最大场依赖性。我们认为这种巨型 SEB 源自弱铁磁表面态和体反铁磁态之间的交换耦合相互作用。通过比较结晶度相对较低的 Fe3BO6 的磁性能,进一步验证了理论分析结果。这项研究的结果将有助于为基于 SEB 效应的器件找到有前途的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A comprehensive molecular dynamics simulation of plastic and liquid succinonitrile: Structural, dynamic, and dielectric properties. A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics. A simple approach to rotationally invariant machine learning of a vector quantity. Ab initio calculations of molecular double Auger decay rates. Application of graph neural network in computational heterogeneous catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1