Water compression induced ionic negative differential resistance in nanopores.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-10-21 DOI:10.1063/5.0227305
Haojing Tan, Zhi He, Ruhong Zhou, Jiandong Feng
{"title":"Water compression induced ionic negative differential resistance in nanopores.","authors":"Haojing Tan, Zhi He, Ruhong Zhou, Jiandong Feng","doi":"10.1063/5.0227305","DOIUrl":null,"url":null,"abstract":"<p><p>The mass transport behavior through nanoscale channels, greatly influenced by the structures and dynamics of nanoconfined water, plays an essential role in many biophysical processes. However, the dynamics of nanoconfined water under an external field and its effects are still not fully understood. Here, on the basis of molecular dynamics simulations, we theoretically show that the ionic current of [Bmim][PF6] through narrow pores in graphene membrane exhibits an ionic negative differential resistance effect-the ionic current decreases as the voltage increases over a certain threshold. This effect arises from the violation of traditional fluid dynamics as the assumption of continuity and homogeneity of fluids is no longer effective in ultrathin nanopores. The gradient of electric field around the atomic-thin layer produces a strong gradient force on the polarized water inside the nanopore. This dielectrophoretically compressed water leads to a hydrostatic force that repels ions from entering the nanopore. Our findings may advance the understanding of hydrostatic mechanism, which governs ion transport through nanopores.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0227305","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The mass transport behavior through nanoscale channels, greatly influenced by the structures and dynamics of nanoconfined water, plays an essential role in many biophysical processes. However, the dynamics of nanoconfined water under an external field and its effects are still not fully understood. Here, on the basis of molecular dynamics simulations, we theoretically show that the ionic current of [Bmim][PF6] through narrow pores in graphene membrane exhibits an ionic negative differential resistance effect-the ionic current decreases as the voltage increases over a certain threshold. This effect arises from the violation of traditional fluid dynamics as the assumption of continuity and homogeneity of fluids is no longer effective in ultrathin nanopores. The gradient of electric field around the atomic-thin layer produces a strong gradient force on the polarized water inside the nanopore. This dielectrophoretically compressed water leads to a hydrostatic force that repels ions from entering the nanopore. Our findings may advance the understanding of hydrostatic mechanism, which governs ion transport through nanopores.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米孔中水压缩引起的离子负差电阻。
纳米级通道的质量传输行为受到纳米封闭水的结构和动力学的极大影响,在许多生物物理过程中发挥着至关重要的作用。然而,人们对纳米封闭水在外力场作用下的动力学及其影响仍不完全了解。在此,我们在分子动力学模拟的基础上,从理论上证明了[Bmim][PF6]通过石墨烯膜窄孔的离子电流表现出离子负差阻效应--离子电流随着电压升高超过一定阈值而减小。由于流体连续性和均匀性假设在超薄纳米孔中不再有效,这种效应违反了传统的流体动力学原理。原子薄层周围的电场梯度对纳米孔内的极化水产生了强大的梯度力。这种经介电泳压缩的水产生的静水压力会阻止离子进入纳米孔。我们的发现可能会加深人们对支配离子通过纳米孔传输的静水机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A comprehensive molecular dynamics simulation of plastic and liquid succinonitrile: Structural, dynamic, and dielectric properties. A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics. A simple approach to rotationally invariant machine learning of a vector quantity. Ab initio calculations of molecular double Auger decay rates. Application of graph neural network in computational heterogeneous catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1