{"title":"Two Squaramide-Based Fluorescent Probes for Cu<sup>2+</sup> and Cd<sup>2</sup>.","authors":"Yuanwei Li, Hongxu Wang, Qian Tao, Bin Wang","doi":"10.1007/s10895-024-03956-7","DOIUrl":null,"url":null,"abstract":"<p><p>The development of potential toxic metal ion probes is of great significance in the field of environmental detection. Herein, two squaramide ligands (2a, 2b) were constructed by combining the characteristics of squaric acid and imine groups. 2a and 2b can recognize Cu<sup>2+</sup> and Cd<sup>2+</sup>, with LOD of 1.26 × 10<sup>-8</sup> M and 2.04 × 10<sup>-8</sup> M, respectively, and have the advantages of fast response and wide pH range. The binding ratio and binding mode of the probe and the target ion were determined by Job's plot, ESI-MS, and <sup>1</sup>H NMR.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03956-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of potential toxic metal ion probes is of great significance in the field of environmental detection. Herein, two squaramide ligands (2a, 2b) were constructed by combining the characteristics of squaric acid and imine groups. 2a and 2b can recognize Cu2+ and Cd2+, with LOD of 1.26 × 10-8 M and 2.04 × 10-8 M, respectively, and have the advantages of fast response and wide pH range. The binding ratio and binding mode of the probe and the target ion were determined by Job's plot, ESI-MS, and 1H NMR.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.