Ashna Adhikari, Simrandeep Kaur, Farhad Forouhar, Shiv Kale, Sang-Wook Park
{"title":"OPDA signaling channels resource (e-) allocations from photosynthetic ETC to plastid cysteine biosynthesis in defense activations.","authors":"Ashna Adhikari, Simrandeep Kaur, Farhad Forouhar, Shiv Kale, Sang-Wook Park","doi":"10.1093/jxb/erae421","DOIUrl":null,"url":null,"abstract":"<p><p>A primary precursor of jasmonates 12-oxo-phytodienoic acid (OPDA) is an autonomous hormone signal that activates and fine-tunes plant defense responses, as well as growth and development. However, the architecture of its signaling circuits remains largely elusive. Here we describe that OPDA signaling drives photosynthetic reductant powers toward the plastid sulfur assimilations, incorporating sulfide into cysteine. Under stressed states, OPDA -accumulated in the chloroplasts- binds and promotes cyclophilin 20-3, an OPDA receptor, to transfer electrons from thioredoxin F2, an electron carrier in the photosynthesis reaction, to serine acetyltransferase 1 (SAT1). The charge carrier (H+, e-) then splits dimeric SAT1 trimers in half to signal the recruitment of dimeric O-acetylserine(thiol)lyase B, forming a hetero-oligomeric cysteine synthase complex (CSC). The CSC formation and its metabolic products (esp., glutathione) then coordinate redox-resolved retrograde signaling from the chloroplasts to the nucleus in adjusting OPDA-responsive gene expressions such as GLUTAREDOXIN 480 and CYTOCHROME P450, and actuating defense responses against various ecological constraints such as salinity and excess oxidants, as well as mechanical wounding. We thus conclude that OPDA signaling regulates a unique metabolic switch in channeling light input into outputs that fuel/shape a multitude of physiological processes, optimizing plant growth fitness and survival capacity under a range of environmental stress cues.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae421","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A primary precursor of jasmonates 12-oxo-phytodienoic acid (OPDA) is an autonomous hormone signal that activates and fine-tunes plant defense responses, as well as growth and development. However, the architecture of its signaling circuits remains largely elusive. Here we describe that OPDA signaling drives photosynthetic reductant powers toward the plastid sulfur assimilations, incorporating sulfide into cysteine. Under stressed states, OPDA -accumulated in the chloroplasts- binds and promotes cyclophilin 20-3, an OPDA receptor, to transfer electrons from thioredoxin F2, an electron carrier in the photosynthesis reaction, to serine acetyltransferase 1 (SAT1). The charge carrier (H+, e-) then splits dimeric SAT1 trimers in half to signal the recruitment of dimeric O-acetylserine(thiol)lyase B, forming a hetero-oligomeric cysteine synthase complex (CSC). The CSC formation and its metabolic products (esp., glutathione) then coordinate redox-resolved retrograde signaling from the chloroplasts to the nucleus in adjusting OPDA-responsive gene expressions such as GLUTAREDOXIN 480 and CYTOCHROME P450, and actuating defense responses against various ecological constraints such as salinity and excess oxidants, as well as mechanical wounding. We thus conclude that OPDA signaling regulates a unique metabolic switch in channeling light input into outputs that fuel/shape a multitude of physiological processes, optimizing plant growth fitness and survival capacity under a range of environmental stress cues.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.