Feizollah A Maleki, Irmgard Seidl-Adams, Gary W Felton, Mônica F Kersch-Becker, James H Tumlinson
{"title":"Stomata: gatekeepers of uptake and defense signaling by green leaf volatiles in maize.","authors":"Feizollah A Maleki, Irmgard Seidl-Adams, Gary W Felton, Mônica F Kersch-Becker, James H Tumlinson","doi":"10.1093/jxb/erae401","DOIUrl":null,"url":null,"abstract":"<p><p>Plants adapt to balance growth-defense tradeoffs in response to both biotic and abiotic stresses. Green leaf volatiles (GLVs) are released after biotic and abiotic stresses and function as damage-associated signals in plants. Although, GLVs enter plants primarily through stomata, the role of stomatal regulation on the kinetics of GLV uptake remains largely unknown. Here, we illustrate the effect of stomatal closure on the timing and magnitude of GLV uptake. We closed stomata by either exposing maize (Zea mays) plants to darkness or applying abscisic acid, a phytohormone that closes the stomata in light. Then, we exposed maize seedlings to (Z)-3-hexen-1-ol and compared its dynamic uptake under different stomatal conditions. Additionally, we used (E)-3-hexen-1-ol, an isomer of (Z)-3-hexen-1-ol not made by maize, to exclude the role of internal GLVs in our assays. We demonstrate that closed stomata effectively prevent GLV entry into exposed plants, even at high concentrations. Furthermore, our findings indicate that reduced GLV uptake impairs GLV-driven induction of biosynthesis of sesquiterpenes, a group of GLV-inducible secondary metabolites, with or without herbivory. These results elucidate how stomata regulate the perception of GLV signals, thereby dramatically changing the plant responses to herbivory, particularly under water stress or dark conditions.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6872-6887"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants adapt to balance growth-defense tradeoffs in response to both biotic and abiotic stresses. Green leaf volatiles (GLVs) are released after biotic and abiotic stresses and function as damage-associated signals in plants. Although, GLVs enter plants primarily through stomata, the role of stomatal regulation on the kinetics of GLV uptake remains largely unknown. Here, we illustrate the effect of stomatal closure on the timing and magnitude of GLV uptake. We closed stomata by either exposing maize (Zea mays) plants to darkness or applying abscisic acid, a phytohormone that closes the stomata in light. Then, we exposed maize seedlings to (Z)-3-hexen-1-ol and compared its dynamic uptake under different stomatal conditions. Additionally, we used (E)-3-hexen-1-ol, an isomer of (Z)-3-hexen-1-ol not made by maize, to exclude the role of internal GLVs in our assays. We demonstrate that closed stomata effectively prevent GLV entry into exposed plants, even at high concentrations. Furthermore, our findings indicate that reduced GLV uptake impairs GLV-driven induction of biosynthesis of sesquiterpenes, a group of GLV-inducible secondary metabolites, with or without herbivory. These results elucidate how stomata regulate the perception of GLV signals, thereby dramatically changing the plant responses to herbivory, particularly under water stress or dark conditions.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.