Role of Circular RNA MMP9 in Glioblastoma Progression: From Interaction With hnRNPC and hnRNPA1 to Affecting the Expression of BIRC5 by Sequestering miR-149.

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Recognition Pub Date : 2024-10-14 DOI:10.1002/jmr.3109
Javad Amini, Nikta Zafarjafarzadeh, Sara Ghahramanlu, Omid Mohammadalizadeh, Elaheh Mozaffari, Bahram Bibak, Nima Sanadgol
{"title":"Role of Circular RNA MMP9 in Glioblastoma Progression: From Interaction With hnRNPC and hnRNPA1 to Affecting the Expression of BIRC5 by Sequestering miR-149.","authors":"Javad Amini, Nikta Zafarjafarzadeh, Sara Ghahramanlu, Omid Mohammadalizadeh, Elaheh Mozaffari, Bahram Bibak, Nima Sanadgol","doi":"10.1002/jmr.3109","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) presents a significant challenge in neuro-oncology due to its aggressive behavior and self-renewal capacity. Circular RNAs (circRNAs), a subset of non-coding RNAs (ncRNAs) generated through mRNA back-splicing, are gaining attention as potential targets for GBM research. In our study, we sought to explore the functional role of circMMP9 (circular form of matrix metalloproteinase-9) as a promising therapeutic target for GBM through bioinformatic predictions and human data analysis. Our results suggest that circMMP9 functions as a sponge for miR-149 and miR-542, both upregulated in GBM based on microarray data. Kaplan-Meier analysis indicated that reduced levels of miR-149 and miR-542 correlate with worse survival outcomes in GBM, suggesting their role as tumor suppressors. Importantly, miR-149 has been demonstrated to inhibit the expression of BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5 or survivin), a significant promoter of proliferation in GBM. BIRC5 is not only upregulated in GBM but also in various other cancers, including neuroblastoma and other brain cancers. Our protein-protein interaction analysis highlights the significance of BIRC5 as a central hub gene in GBM. CircMMP9 seems to influence this complex relationship by suppressing miR-149 and miR-542, despite their increased expression in GBM. Additionally, we found that circMMP9 directly interacts with heterogeneous nuclear ribonucleoproteins C and A1 (hnRNPC and A1), although not within their protein-binding domains. This suggests that hnRNPC/A1 may play a role in transporting circMMP9. Moreover, RNA-seq data from GBM patient samples confirmed the increased expression of BIRC5, PIK3CB, and hnRNPC/A1, further emphasizing the potential therapeutic significance of circMMP9 in GBM. In this study, we propose for the first time a new epigenetic regulatory role for circMMP9, highlighting a novel aspect of its oncogenic function. circMMP9 may regulate BIRC5 expression in GBM by sponging miR-149 and miR-542. BIRC5, in turn, suppresses apoptosis and enhances proliferation in GBM. Nonetheless, more extensive studies are advised to delve deeper into the roles of circMMP9, especially in the context of glioma.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jmr.3109","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma multiforme (GBM) presents a significant challenge in neuro-oncology due to its aggressive behavior and self-renewal capacity. Circular RNAs (circRNAs), a subset of non-coding RNAs (ncRNAs) generated through mRNA back-splicing, are gaining attention as potential targets for GBM research. In our study, we sought to explore the functional role of circMMP9 (circular form of matrix metalloproteinase-9) as a promising therapeutic target for GBM through bioinformatic predictions and human data analysis. Our results suggest that circMMP9 functions as a sponge for miR-149 and miR-542, both upregulated in GBM based on microarray data. Kaplan-Meier analysis indicated that reduced levels of miR-149 and miR-542 correlate with worse survival outcomes in GBM, suggesting their role as tumor suppressors. Importantly, miR-149 has been demonstrated to inhibit the expression of BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5 or survivin), a significant promoter of proliferation in GBM. BIRC5 is not only upregulated in GBM but also in various other cancers, including neuroblastoma and other brain cancers. Our protein-protein interaction analysis highlights the significance of BIRC5 as a central hub gene in GBM. CircMMP9 seems to influence this complex relationship by suppressing miR-149 and miR-542, despite their increased expression in GBM. Additionally, we found that circMMP9 directly interacts with heterogeneous nuclear ribonucleoproteins C and A1 (hnRNPC and A1), although not within their protein-binding domains. This suggests that hnRNPC/A1 may play a role in transporting circMMP9. Moreover, RNA-seq data from GBM patient samples confirmed the increased expression of BIRC5, PIK3CB, and hnRNPC/A1, further emphasizing the potential therapeutic significance of circMMP9 in GBM. In this study, we propose for the first time a new epigenetic regulatory role for circMMP9, highlighting a novel aspect of its oncogenic function. circMMP9 may regulate BIRC5 expression in GBM by sponging miR-149 and miR-542. BIRC5, in turn, suppresses apoptosis and enhances proliferation in GBM. Nonetheless, more extensive studies are advised to delve deeper into the roles of circMMP9, especially in the context of glioma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环状 RNA MMP9 在胶质母细胞瘤进展中的作用:从与 hnRNPC 和 hnRNPA1 相互作用到通过螯合 miR-149 影响 BIRC5 的表达。
多形性胶质母细胞瘤(GBM)具有侵袭性和自我更新能力,是神经肿瘤学领域的重大挑战。环状 RNA(circRNA)是通过 mRNA 反向剪接产生的非编码 RNA(ncRNA)的一个子集,作为 GBM 研究的潜在靶点正日益受到关注。在我们的研究中,我们试图通过生物信息学预测和人类数据分析,探索circMMP9(基质金属蛋白酶-9的环形形式)作为GBM的一个有希望的治疗靶点的功能作用。我们的研究结果表明,circMMP9对miR-149和miR-542起着海绵作用,而根据微阵列数据,miR-149和miR-542在GBM中均上调。Kaplan-Meier分析表明,miR-149和miR-542水平的降低与GBM存活率的下降相关,这表明它们具有肿瘤抑制因子的作用。重要的是,miR-149 已被证明能抑制 BIRC5(含凋亡重复 5 的杆状病毒抑制因子或存活素)的表达,而 BIRC5 是 GBM 中增殖的重要促进因子。BIRC5 不仅在 GBM 中上调,在其他各种癌症中也是如此,包括神经母细胞瘤和其他脑癌。我们的蛋白-蛋白相互作用分析凸显了 BIRC5 作为 GBM 中心枢纽基因的重要性。尽管miR-149和miR-542在GBM中的表达量增加,但CircMMP9似乎通过抑制miR-149和miR-542来影响这种复杂的关系。此外,我们还发现,circMMP9 与异质核核糖核蛋白 C 和 A1(hnRNPC 和 A1)直接相互作用,尽管不是在它们的蛋白结合域内。这表明 hnRNPC/A1 可能在运输 circMMP9 方面发挥作用。此外,来自 GBM 患者样本的 RNA-seq 数据证实了 BIRC5、PIK3CB 和 hnRNPC/A1 的表达增加,这进一步强调了 circMMP9 在 GBM 中的潜在治疗意义。在这项研究中,我们首次提出了 circMMP9 的一种新的表观遗传调控作用,强调了其致癌功能的一个新方面。反过来,BIRC5 又会抑制 GBM 中的细胞凋亡并促进其增殖。然而,要深入研究 circMMP9 的作用,尤其是在胶质瘤中的作用,还需要进行更广泛的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Recognition
Journal of Molecular Recognition 生物-生化与分子生物学
CiteScore
4.60
自引率
3.70%
发文量
68
审稿时长
2.7 months
期刊介绍: Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches. The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.
期刊最新文献
Probing the Molecular Basis of Aminoacyl-Adenylate Affinity With Mycobacterium tuberculosis Leucyl-tRNA Synthetase Employing Molecular Dynamics, Umbrella Sampling Simulations and Site-Directed Mutagenesis. Issue Information Role of Circular RNA MMP9 in Glioblastoma Progression: From Interaction With hnRNPC and hnRNPA1 to Affecting the Expression of BIRC5 by Sequestering miR-149. Targeting Human Papillomavirus 33 E2 DNA Binding Domain With Polyphenols: Unveiling Interactions Through Biophysical and In Silico Methods. Toward Understanding the Mechanism of Client-Selective Small Molecule Inhibitors of the Sec61 Translocon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1