Electronic states bound by repulsive potentials in graphene irradiated by a circularly polarized electromagnetic field.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-11-01 DOI:10.1088/1361-648X/ad88c5
O V Kibis, M V Boev, I V Iorsh, V M Kovalev
{"title":"Electronic states bound by repulsive potentials in graphene irradiated by a circularly polarized electromagnetic field.","authors":"O V Kibis, M V Boev, I V Iorsh, V M Kovalev","doi":"10.1088/1361-648X/ad88c5","DOIUrl":null,"url":null,"abstract":"<p><p>In the framework of the Floquet theory of periodically driven quantum systems, it is demonstrated that irradiation of graphene by a circularly polarized electromagnetic field induces an attractive area in the core of repulsive potentials. Consequently, the quasi-stationary electron states bound by the repulsive potentials appear. The difference between such field-induced states in graphene and usual systems with the parabolic dispersion of electrons is discussed and possible manifestations of these states in electronic transport and optical spectra of graphene are considered.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad88c5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In the framework of the Floquet theory of periodically driven quantum systems, it is demonstrated that irradiation of graphene by a circularly polarized electromagnetic field induces an attractive area in the core of repulsive potentials. Consequently, the quasi-stationary electron states bound by the repulsive potentials appear. The difference between such field-induced states in graphene and usual systems with the parabolic dispersion of electrons is discussed and possible manifestations of these states in electronic transport and optical spectra of graphene are considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
圆极化电磁场辐照下石墨烯中受排斥势约束的电子态。
在周期性驱动量子系统的弗洛凯理论框架下,研究证明圆极化电磁场对石墨烯的辐照会在斥力势的核心诱导出一个吸引力区域。因此,出现了被斥力势束缚的准静态电子态。本文讨论了石墨烯中的这种场诱导态与通常的电子抛物线色散系统的区别,并探讨了这些态在石墨烯的电子传输和光学光谱中可能的表现形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Charge transfer induced phase transition in Li2MnO3at high pressure. From weak- to strong-coupling superconductivity in the AlB2-type solid solution SrGa1-xAlxGe with honeycomb layers. Magnetic order in nanogranular iron germanium (Fe0.53Ge0.47) films. Composite quadrupole order in ferroic and multiferroic materials. Topological and site disorder in boron nitride networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1