Mohammed Hadbi, Kamel Demmouche, Djallal Eddine Mellah, Jose Coutinho
{"title":"Theoretical insights into off-stoichiometric Zr<sub>(x)</sub>Ti<sub>(1-x)</sub>IrSb half-Heusler alloys: a first principle calculations.","authors":"Mohammed Hadbi, Kamel Demmouche, Djallal Eddine Mellah, Jose Coutinho","doi":"10.1088/1361-648X/ad899b","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a theoretical investigation into the phase stability, electronic, and optical properties of off-stoichiometricZrxTi1-xIrSb(<i>x</i>= 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1) compounds. Using first-principles calculations, we explore how varying Zr and Ti concentrations can tune the electronic and optical properties of these half-Heusler alloys. The Structural, optical, and electronic properties were meticulously analyzed with both the GGA-PBE and Meta-GGA-SCAN approximations, as implemented in the Vienna<i>Ab initio</i>Simulation Package (VASP). The dynamical stability of these compounds was assessed using the Phonopy package. Our findings reveal that these alloys exhibit semiconductor behavior with tunable band gaps, and their optical properties show significant variation across different compositions, particularly in the visible light range. The compounds also demonstrate robust dynamical stability, indicating their potential for practical applications in electronic and optoelectronic devices. These results underscore the versatility ofZrxTi1-xIrSballoys and highlight their promise for next-generation technology.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad899b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a theoretical investigation into the phase stability, electronic, and optical properties of off-stoichiometricZrxTi1-xIrSb(x= 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1) compounds. Using first-principles calculations, we explore how varying Zr and Ti concentrations can tune the electronic and optical properties of these half-Heusler alloys. The Structural, optical, and electronic properties were meticulously analyzed with both the GGA-PBE and Meta-GGA-SCAN approximations, as implemented in the ViennaAb initioSimulation Package (VASP). The dynamical stability of these compounds was assessed using the Phonopy package. Our findings reveal that these alloys exhibit semiconductor behavior with tunable band gaps, and their optical properties show significant variation across different compositions, particularly in the visible light range. The compounds also demonstrate robust dynamical stability, indicating their potential for practical applications in electronic and optoelectronic devices. These results underscore the versatility ofZrxTi1-xIrSballoys and highlight their promise for next-generation technology.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.