Jun-Yu Huo, Can Hou, Xiao-Long Li, Ling Yang, Wan-Ying Jiang
{"title":"Renal denervation ameliorates atrial remodeling in type 2 diabetic rats by regulating mitochondrial dynamics.","authors":"Jun-Yu Huo, Can Hou, Xiao-Long Li, Ling Yang, Wan-Ying Jiang","doi":"10.1007/s13105-024-01054-7","DOIUrl":null,"url":null,"abstract":"<p><p>There is no effective treatment for diabetes-related atrial remodeling currently. This study aimed to investigate the effects of renal denervation (RDN) on diabetes-related atrial remodeling and explore the related mechanisms. A type 2 diabetes mellitus model was established by high-fat diet feeding and low-dose streptozotocin injection in Sprague‒Dawley rats. After successful modeling, the diabetic rats were randomly assigned to two groups according to whether they were subjected to RDN or sham RDN surgery. At the end of the experiment, cardiac function and structure were evaluated by echocardiography and histology, respectively. Mitochondrial morphology, function and mitochondrial dynamics were assessed by multiple methods. Mdivi1 was used to verify the mechanism by which RDN improves atrial remodeling. In the 10th week, diabetic rats exhibited obvious atrial remodeling, including atrial enlargement and diastolic dysfunction. Pathological staining showed that diabetic rats had cardiomyocyte hypertrophy and interstitial fibrosis in atrial tissues. In terms of mitochondrial morphology and function, diabetic rats exhibited fragmented mitochondria, reduced adenosine triphosphate production and decreased mitochondrial membrane potential levels. Abnormal mitochondrial dynamics in diabetic rats were characterized by the inhibition of mitochondrial fusion, excessive mitochondrial fission, and the suppression of mitophagy. However, RDN effectively ameliorated diabetes-induced pathological atrial remodeling. In addition, RDN significantly improved mitochondrial morphological and functional abnormalities and corrected the disorders of mitochondrial dynamics. Furthermore, the protective effects of RDN against atrial remodeling were related to the regulation of mitochondrial dynamics. RDN prevented diabetes-induced atrial remodeling. These protective effects might be related to improvements in mitochondrial dynamics.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-024-01054-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is no effective treatment for diabetes-related atrial remodeling currently. This study aimed to investigate the effects of renal denervation (RDN) on diabetes-related atrial remodeling and explore the related mechanisms. A type 2 diabetes mellitus model was established by high-fat diet feeding and low-dose streptozotocin injection in Sprague‒Dawley rats. After successful modeling, the diabetic rats were randomly assigned to two groups according to whether they were subjected to RDN or sham RDN surgery. At the end of the experiment, cardiac function and structure were evaluated by echocardiography and histology, respectively. Mitochondrial morphology, function and mitochondrial dynamics were assessed by multiple methods. Mdivi1 was used to verify the mechanism by which RDN improves atrial remodeling. In the 10th week, diabetic rats exhibited obvious atrial remodeling, including atrial enlargement and diastolic dysfunction. Pathological staining showed that diabetic rats had cardiomyocyte hypertrophy and interstitial fibrosis in atrial tissues. In terms of mitochondrial morphology and function, diabetic rats exhibited fragmented mitochondria, reduced adenosine triphosphate production and decreased mitochondrial membrane potential levels. Abnormal mitochondrial dynamics in diabetic rats were characterized by the inhibition of mitochondrial fusion, excessive mitochondrial fission, and the suppression of mitophagy. However, RDN effectively ameliorated diabetes-induced pathological atrial remodeling. In addition, RDN significantly improved mitochondrial morphological and functional abnormalities and corrected the disorders of mitochondrial dynamics. Furthermore, the protective effects of RDN against atrial remodeling were related to the regulation of mitochondrial dynamics. RDN prevented diabetes-induced atrial remodeling. These protective effects might be related to improvements in mitochondrial dynamics.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.