LMCD-OR: a large-scale, multilevel categorized diagnostic dataset for oral radiography.

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-10-14 DOI:10.1186/s12967-024-05741-3
Jiaqian Zhu, Li Zeng, Zefei Mo, Luhuan Cao, Yanchan Wu, Liang Hong, Qi Zhao, Feifei Su
{"title":"LMCD-OR: a large-scale, multilevel categorized diagnostic dataset for oral radiography.","authors":"Jiaqian Zhu, Li Zeng, Zefei Mo, Luhuan Cao, Yanchan Wu, Liang Hong, Qi Zhao, Feifei Su","doi":"10.1186/s12967-024-05741-3","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, digital dentistry has increasingly utilized advanced image analysis techniques, such as image classification and disease diagnosis, to improve clinical outcomes. Despite these advances, the lack of comprehensive benchmark datasets is a significant barrier. To address this gap, our research team develop LMCD-OR, a substantial collection of oral radiograph images designed to support extensive artificial intelligence (AI)-driven diagnostics. LMCD-OR comprises 3,818 digital imaging and communications in medicine (DICOM) oral X-ray images from local medical institutions that are meticulously annotated to provide broad category information for both primary dental outpatient services and detailed secondary disease diagnoses. This dataset is engineered to train and validate multiclassification models to improve the precision and scope of oral disease diagnostics. To ensure robust dataset validation, we employ four cutting-edge visual neural network classification models as benchmarks. These models are tested against rigorous performance metrics, demonstrating the ability of the dataset to support advanced image classification and disease diagnosis tasks. LMCD-OR is publicly available at http://dentaldataset.zeroacademy.net .</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-024-05741-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, digital dentistry has increasingly utilized advanced image analysis techniques, such as image classification and disease diagnosis, to improve clinical outcomes. Despite these advances, the lack of comprehensive benchmark datasets is a significant barrier. To address this gap, our research team develop LMCD-OR, a substantial collection of oral radiograph images designed to support extensive artificial intelligence (AI)-driven diagnostics. LMCD-OR comprises 3,818 digital imaging and communications in medicine (DICOM) oral X-ray images from local medical institutions that are meticulously annotated to provide broad category information for both primary dental outpatient services and detailed secondary disease diagnoses. This dataset is engineered to train and validate multiclassification models to improve the precision and scope of oral disease diagnostics. To ensure robust dataset validation, we employ four cutting-edge visual neural network classification models as benchmarks. These models are tested against rigorous performance metrics, demonstrating the ability of the dataset to support advanced image classification and disease diagnosis tasks. LMCD-OR is publicly available at http://dentaldataset.zeroacademy.net .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LMCD-OR:大规模、多层次的口腔放射学分类诊断数据集。
近年来,数字牙科越来越多地利用先进的图像分析技术(如图像分类和疾病诊断)来改善临床效果。尽管取得了这些进展,但缺乏全面的基准数据集仍是一大障碍。为了弥补这一缺陷,我们的研究团队开发了 LMCD-OR,这是一个大量口腔放射图像的集合,旨在支持广泛的人工智能(AI)驱动诊断。LMCD-OR 包含来自当地医疗机构的 3,818 张数字成像和医学通信(DICOM)口腔 X 光图像,这些图像经过精心注释,可为初级牙科门诊服务和详细的二级疾病诊断提供广泛的类别信息。该数据集用于训练和验证多分类模型,以提高口腔疾病诊断的精度和范围。为确保数据集得到可靠验证,我们采用了四种最先进的视觉神经网络分类模型作为基准。这些模型经过了严格的性能指标测试,证明了数据集支持高级图像分类和疾病诊断任务的能力。LMCD-OR 可通过 http://dentaldataset.zeroacademy.net 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1