Meihua Lian , Xiangfeng Zeng , Lixia Li , Mingze Sun , Xiaojun Li
{"title":"Fate of arsenic in contaminated coastal soil induced by rising temperature and seawater intrusion","authors":"Meihua Lian , Xiangfeng Zeng , Lixia Li , Mingze Sun , Xiaojun Li","doi":"10.1016/j.marenvres.2024.106799","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature rising and seawater intrusion are expected to influence the hydrologic regime and redox conditions in coastal soil, and the fate and mechanisms of biogeochemical cycling of Arsenic (As) in the specific environment are poorly understood. This work was carried out in an anaerobic operating chamber by adding sulfate to simulate seawater intrusion under various temperature. Results demonstrated the microbial community diversity was influenced by temperature and the highest Shannon and lowest Simpson index were found at 28 °C. Firmicutes was the dominant bacteria, accounting for 81.16%–93.99%. <em>Desulfosporosinus</em>, with the proportion increasing with temperature, showed a significantly positive correlation with S<sup>2−</sup> for sulfate addition treatments. Actually, transformation of As was meditated by the concentration and valence of sulfur and iron in soil. The dissimilatory reduction of arsenic-bearing Fe oxides occurring in the initial stage, is suspected to be the primary driver of As release. Then, concentration of As declined in aqueous phase due to the reduction of sulfate, and the proportion of residual speciation of As in solid phase increased with temperature, ranging from 6.78% to 27.70%. The results displayed the reducing condition due to seawater intrusion and temperature change could regulate the release and sequestration of As in the coastal soil.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106799"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624004604","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature rising and seawater intrusion are expected to influence the hydrologic regime and redox conditions in coastal soil, and the fate and mechanisms of biogeochemical cycling of Arsenic (As) in the specific environment are poorly understood. This work was carried out in an anaerobic operating chamber by adding sulfate to simulate seawater intrusion under various temperature. Results demonstrated the microbial community diversity was influenced by temperature and the highest Shannon and lowest Simpson index were found at 28 °C. Firmicutes was the dominant bacteria, accounting for 81.16%–93.99%. Desulfosporosinus, with the proportion increasing with temperature, showed a significantly positive correlation with S2− for sulfate addition treatments. Actually, transformation of As was meditated by the concentration and valence of sulfur and iron in soil. The dissimilatory reduction of arsenic-bearing Fe oxides occurring in the initial stage, is suspected to be the primary driver of As release. Then, concentration of As declined in aqueous phase due to the reduction of sulfate, and the proportion of residual speciation of As in solid phase increased with temperature, ranging from 6.78% to 27.70%. The results displayed the reducing condition due to seawater intrusion and temperature change could regulate the release and sequestration of As in the coastal soil.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.