Kousumi Mukherjee, Denise Kreugel, Nga Phung, Cristian van Helvoirt, Valerio Zardetto and Mariadriana Creatore
{"title":"On the VOC loss in NiO-based inverted metal halide perovskite solar cells†","authors":"Kousumi Mukherjee, Denise Kreugel, Nga Phung, Cristian van Helvoirt, Valerio Zardetto and Mariadriana Creatore","doi":"10.1039/D4MA00873A","DOIUrl":null,"url":null,"abstract":"<p >Recent reports have shown that nickel oxide (NiO) when adopted as a hole transport layer (HTL) in combination with organic layers, such as PTAA or self-assembled monolayers (SAMs), leads to a higher device yield for both single junction as well as tandem devices. Nevertheless, implementing NiO in devices without PTAA or SAM is seldom reported to lead to high-performance devices. In this work, we assess the effect of key NiO properties deemed relevant in literature, namely- resistivity and surface energy, on the device performance and systematically compare the NiO-based devices with those based on PTAA. To this purpose, (thermal) atomic layer deposited (ALD) NiO (NiO<small><sub>Bu-MeAMD</sub></small>), Al-doped NiO (Al:NiO<small><sub>Bu-MeAMD</sub></small>), and plasma-assisted ALD NiO (NiO<small><sub>MeCp</sub></small>) films, characterized by a wide range of resistivity, are investigated. Although Al:NiO<small><sub>Bu-MeAMD</sub></small> (∼400 Ω cm) and NiO<small><sub>MeCp</sub></small>(∼80 Ωcm) films have a lower resistivity than NiO<small><sub>Bu-MeAMD</sub></small> (∼10 kΩ cm), the Al:NiO<small><sub>Bu-MeAMD</sub></small> and NiO<small><sub>MeCp</sub></small>-based devices are found to have a modest open circuit voltage (<em>V</em><small><sub>OC</sub></small>) gain of ∼30 mV compared to NiO<small><sub>Bu-MeAMD</sub></small>-based devices. Overall, the best-performing NiO-based devices (∼14.8% power conversion efficiency (PCE)) still lag behind the PTAA-based devices (∼17.5%), primarily due to a <em>V</em><small><sub>OC</sub></small> loss of ∼100 mV. Further investigation based on light intensity analysis of the <em>V</em><small><sub>OC</sub></small> and FF and the decrease in <em>V</em><small><sub>OC</sub></small> compared to the quasi-Fermi level splitting (QFLS) indicates that the <em>V</em><small><sub>OC</sub></small> is limited by trap-assisted recombination at the NiO/perovskite interface. Additionally, SCAPS simulations show that the presence of a high interfacial trap density leads to a <em>V</em><small><sub>OC</sub></small> loss in NiO-based devices. Upon passivation of the NiO/perovskite interface with Me-4PACz, the <em>V</em><small><sub>OC</sub></small> increases by 170–200 mV and is similar for NiO<small><sub>Bu-MeAMD</sub></small> and Al:NiO<small><sub>Bu-MeAMD</sub></small>, leading to the conclusion that there is no influence of the NiO resistivity on the <em>V</em><small><sub>OC</sub></small> once interface passivation is realized. Finally, our work highlights the necessity of comparing NiO-based devices with state-of-the-art HTL-based devices to draw conclusion about the influence of specific material properties on device performance.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8652-8664"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00873a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent reports have shown that nickel oxide (NiO) when adopted as a hole transport layer (HTL) in combination with organic layers, such as PTAA or self-assembled monolayers (SAMs), leads to a higher device yield for both single junction as well as tandem devices. Nevertheless, implementing NiO in devices without PTAA or SAM is seldom reported to lead to high-performance devices. In this work, we assess the effect of key NiO properties deemed relevant in literature, namely- resistivity and surface energy, on the device performance and systematically compare the NiO-based devices with those based on PTAA. To this purpose, (thermal) atomic layer deposited (ALD) NiO (NiOBu-MeAMD), Al-doped NiO (Al:NiOBu-MeAMD), and plasma-assisted ALD NiO (NiOMeCp) films, characterized by a wide range of resistivity, are investigated. Although Al:NiOBu-MeAMD (∼400 Ω cm) and NiOMeCp(∼80 Ωcm) films have a lower resistivity than NiOBu-MeAMD (∼10 kΩ cm), the Al:NiOBu-MeAMD and NiOMeCp-based devices are found to have a modest open circuit voltage (VOC) gain of ∼30 mV compared to NiOBu-MeAMD-based devices. Overall, the best-performing NiO-based devices (∼14.8% power conversion efficiency (PCE)) still lag behind the PTAA-based devices (∼17.5%), primarily due to a VOC loss of ∼100 mV. Further investigation based on light intensity analysis of the VOC and FF and the decrease in VOC compared to the quasi-Fermi level splitting (QFLS) indicates that the VOC is limited by trap-assisted recombination at the NiO/perovskite interface. Additionally, SCAPS simulations show that the presence of a high interfacial trap density leads to a VOC loss in NiO-based devices. Upon passivation of the NiO/perovskite interface with Me-4PACz, the VOC increases by 170–200 mV and is similar for NiOBu-MeAMD and Al:NiOBu-MeAMD, leading to the conclusion that there is no influence of the NiO resistivity on the VOC once interface passivation is realized. Finally, our work highlights the necessity of comparing NiO-based devices with state-of-the-art HTL-based devices to draw conclusion about the influence of specific material properties on device performance.