[Retracted] Carnosol inhibits osteoclastogenesis in vivo and in vitro by blocking the RANKL‑induced NF‑κB signaling pathway.

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular medicine reports Pub Date : 2025-01-01 Epub Date: 2024-10-18 DOI:10.3892/mmr.2024.13369
Pan Cai, Shichang Yan, Yan Lu, Xiaoxiao Zhou, Xiuhui Wang, Minghui Wang, Zhifeng Yin
{"title":"[Retracted] Carnosol inhibits osteoclastogenesis <i>in vivo</i> and <i>in vitro</i> by blocking the RANKL‑induced NF‑κB signaling pathway.","authors":"Pan Cai, Shichang Yan, Yan Lu, Xiaoxiao Zhou, Xiuhui Wang, Minghui Wang, Zhifeng Yin","doi":"10.3892/mmr.2024.13369","DOIUrl":null,"url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that one of the data panels in Fig. 3A on p. 6, showing how carnosol inhibits RANKL-induced osteoclastogenesis in the early stage of differentiation,  was strikingly similar to data that had already been submitted for publication in another article in the journal <i>Annals of Translational Medicine</i> written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to <i>Molecular Medicine Reports</i>, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [26: 225, 2022; DOI: 10.3892/mmr.2022.12741].</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13369","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that one of the data panels in Fig. 3A on p. 6, showing how carnosol inhibits RANKL-induced osteoclastogenesis in the early stage of differentiation,  was strikingly similar to data that had already been submitted for publication in another article in the journal Annals of Translational Medicine written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [26: 225, 2022; DOI: 10.3892/mmr.2022.12741].

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[撤稿】卡诺索尔通过阻断 RANKL 诱导的 NF-κB 信号通路,抑制体内和体外破骨细胞生成。
在这篇论文发表后,一位读者提请编辑注意,第 6 页图 3A 中的一个数据面板显示了 carnosol 如何在分化早期抑制 RANKL 诱导的破骨细胞生成,该数据与已提交发表在《转化医学年鉴》(Annals of Translational Medicine)杂志上、由不同研究机构的不同作者撰写的另一篇文章中的数据惊人地相似。由于上述文章中有争议的数据在提交给《分子医学报告》之前就已提交发表,因此编辑决定从该杂志撤回这篇论文。经与作者联系,他们接受了撤稿决定。对于给读者带来的不便,编辑深表歉意。[26: 225, 2022; DOI: 10.3892/mmr.2022.12741]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
期刊最新文献
[Corrigendum] MicroRNA‑378 enhances migration and invasion in cervical cancer by directly targeting autophagy‑related protein 12. [Retracted] Carnosol inhibits osteoclastogenesis in vivo and in vitro by blocking the RANKL‑induced NF‑κB signaling pathway. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Orphan nuclear receptor NR4A1 regulates both osteoblastogenesis and adipogenesis in human mesenchymal stem cells. [Retracted] Molecular mechanism of atractylon in the invasion and migration of hepatic cancer cells based on high‑throughput sequencing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1