Mechanisms of glutamate receptors hypofunction dependent synaptic transmission impairment in the hippocampus of schizophrenia susceptibility gene Opcml-deficient mouse model.

IF 3.3 3区 医学 Q2 NEUROSCIENCES Molecular Brain Pub Date : 2024-10-17 DOI:10.1186/s13041-024-01148-9
Xiaoxuan Sun, Hu Meng, Tianlan Lu, Weihua Yue, Dai Zhang, Lifang Wang, Jun Li
{"title":"Mechanisms of glutamate receptors hypofunction dependent synaptic transmission impairment in the hippocampus of schizophrenia susceptibility gene Opcml-deficient mouse model.","authors":"Xiaoxuan Sun, Hu Meng, Tianlan Lu, Weihua Yue, Dai Zhang, Lifang Wang, Jun Li","doi":"10.1186/s13041-024-01148-9","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is a severe psychiatric disorder with high heritability, characterized by positive and negative symptoms as well as cognitive abnormalities. Dysfunction in glutamate synapse is strongly implicated in the pathophysiology of schizophrenia. However, the precise role of the perturbed glutamatergic system in contributing to the cognitive abnormalities of schizophrenia at the synaptic level remains largely unknown. Although our previous work found that Opcml promotes spine maturation and Opcml-deficient mice exhibit schizophrenia-related cognitive impairments, the synaptic mechanism remains unclear. By using whole-cell patch clamp recording, we found that decreased neuronal excitability and alterations in intrinsic membrane properties of CA1 PNs in Opcml-deficient mice. Furthermore, Opcml deficiency leads to impaired glutamatergic transmission in hippocampus, which is closely related to postsynaptic AMPA/NMDA receptors dysfunction, resulting in the disturbances of E/I balance. Additionally, we found that the aripiprazole which we used to ameliorate abnormal cognitive behaviors also rescued the impaired glutamatergic transmission in Opcml-deficient mice. These findings will help to understand the synaptic mechanism in schizophrenia pathogenesis, providing insights into schizophrenia therapeutics with glutamatergic disruption.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01148-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia is a severe psychiatric disorder with high heritability, characterized by positive and negative symptoms as well as cognitive abnormalities. Dysfunction in glutamate synapse is strongly implicated in the pathophysiology of schizophrenia. However, the precise role of the perturbed glutamatergic system in contributing to the cognitive abnormalities of schizophrenia at the synaptic level remains largely unknown. Although our previous work found that Opcml promotes spine maturation and Opcml-deficient mice exhibit schizophrenia-related cognitive impairments, the synaptic mechanism remains unclear. By using whole-cell patch clamp recording, we found that decreased neuronal excitability and alterations in intrinsic membrane properties of CA1 PNs in Opcml-deficient mice. Furthermore, Opcml deficiency leads to impaired glutamatergic transmission in hippocampus, which is closely related to postsynaptic AMPA/NMDA receptors dysfunction, resulting in the disturbances of E/I balance. Additionally, we found that the aripiprazole which we used to ameliorate abnormal cognitive behaviors also rescued the impaired glutamatergic transmission in Opcml-deficient mice. These findings will help to understand the synaptic mechanism in schizophrenia pathogenesis, providing insights into schizophrenia therapeutics with glutamatergic disruption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精神分裂症易感基因 Opcml 缺失小鼠模型海马中谷氨酸受体功能低下依赖性突触传递损伤的机制。
精神分裂症是一种具有高度遗传性的严重精神疾病,以阳性和阴性症状以及认知异常为特征。谷氨酸突触功能障碍与精神分裂症的病理生理学密切相关。然而,谷氨酸能系统紊乱在突触水平上导致精神分裂症认知异常的确切作用在很大程度上仍然未知。尽管我们之前的研究发现Opcml能促进脊柱成熟,且Opcml缺失的小鼠表现出精神分裂症相关的认知障碍,但突触机制仍不清楚。通过全细胞膜片钳记录,我们发现Opcml缺陷小鼠CA1 PN的神经元兴奋性降低,固有膜特性发生改变。此外,Opcml缺陷导致海马的谷氨酸能传导受损,这与突触后AMPA/NMDA受体功能障碍密切相关,从而导致E/I平衡紊乱。此外,我们还发现,用于改善异常认知行为的阿立哌唑也能挽救Opcml缺陷小鼠受损的谷氨酸能传导。这些发现将有助于理解精神分裂症发病机制中的突触机制,为利用谷氨酸能干扰治疗精神分裂症提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
期刊最新文献
NDRG1 upregulation by ubiquitin proteasome system dysfunction aggravates neurodegeneration. Ultrastructural characterization of hippocampal inhibitory synapses under resting and stimulated conditions. Mechanisms of glutamate receptors hypofunction dependent synaptic transmission impairment in the hippocampus of schizophrenia susceptibility gene Opcml-deficient mouse model. Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people. Proteasome inhibition suppresses the induction of lipocalin-2 upon systemic lipopolysaccharide challenge in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1