GOLPH3 inhibition overcomes cisplatin resistance by restoring the glutathione/reactive oxygen species balance in the A549 non‑small cell lung cancer cell line.
{"title":"GOLPH3 inhibition overcomes cisplatin resistance by restoring the glutathione/reactive oxygen species balance in the A549 non‑small cell lung cancer cell line.","authors":"Qiongying Wei, Jinquan Lin, Zhuangbin Lin, Nanding Yu, Yingxiao Wu, Xuexue Tan, Dan Xue","doi":"10.3892/or.2024.8829","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin resistance is common in non‑small cell lung cancer (NSCLC); however, the molecular mechanisms remain unclear. The present study aimed to identify a new function of Golgi phosphoprotein 3 (GOLPH3) in NSCLC‑associated cisplatin resistance. Using A549 human NSCLC cells and the cisplatin‑resistant variant, stable cell lines with GOLPH3 knockdown or overexpression were established using lentiviral vectors. Through Cell Counting Kit‑8 and EdU assays, it was revealed that knockdown of GOLPH3 significantly enhanced cisplatin sensitivity in NSCLC cells. Specifically, flow cytometric analysis showed that GOLPH3 knockdown promoted apoptosis and G<sub>2</sub>‑phase cell cycle arrest in A549 cells. Mechanistically, intracellular reactive oxygen species (ROS) and glutathione (GSH) levels were measured using assay kits, and it was demonstrated that GOLPH3 knockdown decreased intracellular GSH levels, and further attenuated intracellular cisplatin efflux and GSH/ROS imbalance. In addition, tumor‑sphere formation assays verified that GOLPH3 knockdown mitigated the stem cell‑like phenotype of NSCLC cells. In conclusion, the present findings indicated the relevance of GOLPH3 in NSCLC‑associated cisplatin resistance, and thus targeting GOLPH3 may be developed into a combination therapy to overcome cisplatin resistance.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/or.2024.8829","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cisplatin resistance is common in non‑small cell lung cancer (NSCLC); however, the molecular mechanisms remain unclear. The present study aimed to identify a new function of Golgi phosphoprotein 3 (GOLPH3) in NSCLC‑associated cisplatin resistance. Using A549 human NSCLC cells and the cisplatin‑resistant variant, stable cell lines with GOLPH3 knockdown or overexpression were established using lentiviral vectors. Through Cell Counting Kit‑8 and EdU assays, it was revealed that knockdown of GOLPH3 significantly enhanced cisplatin sensitivity in NSCLC cells. Specifically, flow cytometric analysis showed that GOLPH3 knockdown promoted apoptosis and G2‑phase cell cycle arrest in A549 cells. Mechanistically, intracellular reactive oxygen species (ROS) and glutathione (GSH) levels were measured using assay kits, and it was demonstrated that GOLPH3 knockdown decreased intracellular GSH levels, and further attenuated intracellular cisplatin efflux and GSH/ROS imbalance. In addition, tumor‑sphere formation assays verified that GOLPH3 knockdown mitigated the stem cell‑like phenotype of NSCLC cells. In conclusion, the present findings indicated the relevance of GOLPH3 in NSCLC‑associated cisplatin resistance, and thus targeting GOLPH3 may be developed into a combination therapy to overcome cisplatin resistance.
期刊介绍:
Oncology Reports is a monthly, peer-reviewed journal devoted to the publication of high quality original studies and reviews concerning a broad and comprehensive view of fundamental and applied research in oncology, focusing on carcinogenesis, metastasis and epidemiology.