Guy Gurevitch, Nitzan Lubianiker, Taly Markovits, Ayelet Or-Borichev, Haggai Sharon, Naomi B Fine, Tom Fruchtman-Steinbok, Jacob N Keynan, Moni Shahar, Alon Friedman, Neomi Singer, Talma Hendler
{"title":"Amygdala self-neuromodulation capacity as a window for process-related network recruitment.","authors":"Guy Gurevitch, Nitzan Lubianiker, Taly Markovits, Ayelet Or-Borichev, Haggai Sharon, Naomi B Fine, Tom Fruchtman-Steinbok, Jacob N Keynan, Moni Shahar, Alon Friedman, Neomi Singer, Talma Hendler","doi":"10.1098/rstb.2024.0186","DOIUrl":null,"url":null,"abstract":"<p><p>Neurofeedback (NF) has emerged as a promising avenue for demonstrating process-related neuroplasticity, enabling self-regulation of brain function. NF targeting the amygdala has drawn attention to therapeutic potential in psychiatry, by potentially harnessing emotion-regulation processes. However, not all individuals respond equally to NF training, possibly owing to varying self-regulation abilities. This underscores the importance of understanding the mechanisms behind successful neuromodulation (i.e. capacity). This study aimed to investigate the establishment and neural correlates of neuromodulation capacity using data from repeated sessions of amygdala electrical fingerprint (Amyg-EFP)-NF and post-training functional magnetic resonance imaging (fMRI)-NF sessions. Results from 97 participants (healthy controls and post-traumatic stress disorder and fibromyalgia patients) revealed increased Amyg-EFP neuromodulation capacity over training, associated with post-training amygdala-fMRI modulation capacity and improvements in alexithymia. Individual differenaces in this capacity were associated with pre-training amygdala reactivity and initial neuromodulation success. Additionally, amygdala downregulation during fMRI-NF co-modulated with other regions such as the posterior insula and parahippocampal gyrus. This combined modulation better explained EFP-modulation capacity and improvement in alexithymia than the amygdala modulation alone, suggesting the relevance of this broader network to gained capacity. These findings support a network-based approach for NF and highlight the need to consider individual differences in brain function and modulation capacity to optimize NF interventions. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20240186"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2024.0186","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurofeedback (NF) has emerged as a promising avenue for demonstrating process-related neuroplasticity, enabling self-regulation of brain function. NF targeting the amygdala has drawn attention to therapeutic potential in psychiatry, by potentially harnessing emotion-regulation processes. However, not all individuals respond equally to NF training, possibly owing to varying self-regulation abilities. This underscores the importance of understanding the mechanisms behind successful neuromodulation (i.e. capacity). This study aimed to investigate the establishment and neural correlates of neuromodulation capacity using data from repeated sessions of amygdala electrical fingerprint (Amyg-EFP)-NF and post-training functional magnetic resonance imaging (fMRI)-NF sessions. Results from 97 participants (healthy controls and post-traumatic stress disorder and fibromyalgia patients) revealed increased Amyg-EFP neuromodulation capacity over training, associated with post-training amygdala-fMRI modulation capacity and improvements in alexithymia. Individual differenaces in this capacity were associated with pre-training amygdala reactivity and initial neuromodulation success. Additionally, amygdala downregulation during fMRI-NF co-modulated with other regions such as the posterior insula and parahippocampal gyrus. This combined modulation better explained EFP-modulation capacity and improvement in alexithymia than the amygdala modulation alone, suggesting the relevance of this broader network to gained capacity. These findings support a network-based approach for NF and highlight the need to consider individual differences in brain function and modulation capacity to optimize NF interventions. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.