Comparison of Resistance Acquisition and Mechanisms in Erwinia amylovora against Agrochemicals Used for Fire Blight Control.

IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Plant Pathology Journal Pub Date : 2024-10-01 DOI:10.5423/PPJ.OA.07.2024.0106
Hyeonheui Ham, Ga-Ram Oh, Yong Hwan Lee, Yong Hoon Lee
{"title":"Comparison of Resistance Acquisition and Mechanisms in Erwinia amylovora against Agrochemicals Used for Fire Blight Control.","authors":"Hyeonheui Ham, Ga-Ram Oh, Yong Hwan Lee, Yong Hoon Lee","doi":"10.5423/PPJ.OA.07.2024.0106","DOIUrl":null,"url":null,"abstract":"<p><p>Agrochemicals containing antibiotics are authorized to manage fire blight that has been occurring in Korea since 2015. The minimum inhibitory concentration (MIC) of each antibiotic against Erwinia amylovora, the causal pathogen of fire blight, has increased over the years due to the pathogen's frequent exposure to antibiotics, indicating the necessity to prepare for the emergence of antibiotic resistance. In this study, E. amylovora was exposed to stepwise increasing concentrations of eight different agrochemicals, each containing single or mixed antibiotics, and gene mutation and changes in MIC were assessed. Streptomycin and oxolinic acid induced an amino acid substitution in RpsL and GyrA, respectively, resulting in a rapid increase in MIC. Oxytetracycline initially induced amino acid substitutions or frameshifts in AcrR, followed by substitutions of 30S small ribosomal protein subunit S10 or AcrB, further increasing MIC. E. amylovora acquired resistance in the order of oxolinic acid, streptomycin, and oxytetracycline at varying exposure frequencies. Resistance acquisition was slower against agrochemicals containing mixed antibiotics than those with single antibiotics. However, gene mutations conferring antibiotic resistance emerged sequentially to both antibiotics in the mixed formulations. Results suggested that frequent application of mixed antibiotics could lead to the emergence of multidrug-resistant E. amylovora isolates. This study provided essential insights into preventing the emergence of antibiotic-resistant E. amylovora and understanding the underlying mechanisms of resistance acquisition.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"525-536"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.07.2024.0106","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Agrochemicals containing antibiotics are authorized to manage fire blight that has been occurring in Korea since 2015. The minimum inhibitory concentration (MIC) of each antibiotic against Erwinia amylovora, the causal pathogen of fire blight, has increased over the years due to the pathogen's frequent exposure to antibiotics, indicating the necessity to prepare for the emergence of antibiotic resistance. In this study, E. amylovora was exposed to stepwise increasing concentrations of eight different agrochemicals, each containing single or mixed antibiotics, and gene mutation and changes in MIC were assessed. Streptomycin and oxolinic acid induced an amino acid substitution in RpsL and GyrA, respectively, resulting in a rapid increase in MIC. Oxytetracycline initially induced amino acid substitutions or frameshifts in AcrR, followed by substitutions of 30S small ribosomal protein subunit S10 or AcrB, further increasing MIC. E. amylovora acquired resistance in the order of oxolinic acid, streptomycin, and oxytetracycline at varying exposure frequencies. Resistance acquisition was slower against agrochemicals containing mixed antibiotics than those with single antibiotics. However, gene mutations conferring antibiotic resistance emerged sequentially to both antibiotics in the mixed formulations. Results suggested that frequent application of mixed antibiotics could lead to the emergence of multidrug-resistant E. amylovora isolates. This study provided essential insights into preventing the emergence of antibiotic-resistant E. amylovora and understanding the underlying mechanisms of resistance acquisition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较 Erwinia amylovora 对用于控制火疫病的农用化学品的抗性获得和机制。
含有抗生素的农用化学品被授权用于管理 2015 年以来在韩国发生的火疫病。由于火枯萎病的病原体 Erwinia amylovora 经常接触抗生素,每种抗生素对其的最小抑菌浓度(MIC)逐年增加,这表明有必要为抗生素耐药性的出现做好准备。在这项研究中,E. amylovora 接触了浓度逐步增加的八种不同农用化学品,每种化学品都含有单一或混合抗生素,并对基因突变和 MIC 变化进行了评估。链霉素和草甘膦分别诱导了 RpsL 和 GyrA 的氨基酸替代,导致 MIC 快速增加。土霉素最初会诱导 AcrR 的氨基酸替换或帧转移,随后 30S 小核糖体蛋白亚基 S10 或 AcrB 也会发生替换,从而进一步提高 MIC。在不同的接触频率下,淀粉样球菌获得抗药性的顺序依次为氧氟沙星、链霉素和土霉素。与含有单一抗生素的农用化学品相比,对含有混合抗生素的农用化学品产生抗药性的速度较慢。然而,对混合制剂中的两种抗生素产生抗药性的基因突变是依次出现的。研究结果表明,频繁使用混合抗生素可能会导致耐多药淀粉菌分离株的出现。这项研究为防止出现抗生素耐药性淀粉样大肠杆菌和了解耐药性获得的基本机制提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Pathology Journal
Plant Pathology Journal 生物-植物科学
CiteScore
4.90
自引率
4.30%
发文量
71
审稿时长
12 months
期刊介绍: Information not localized
期刊最新文献
Molecular Identification and Genetic Diversity Analysis of Papaya Leaf Curl China Virus Infecting Ageratum conyzoides. Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities. Re-identification of Korean Isolates in the Colletotrichum dematium, C. magnum, C. orchidearum, and C. orbiculare Species Complexes. Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness. Arabidopsis WRKY55 Transcription Factor Enhances Soft Rot Disease Resistance with ORA59.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1