首页 > 最新文献

Plant Pathology Journal最新文献

英文 中文
Capsicum annuum NAC4 (CaNAC4) Is a Transcription Factor with Roles in Biotic and Abiotic Stresses. 辣椒 NAC4(CaNAC4)是一种在生物和非生物压力中发挥作用的转录因子。
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.07.2024.0104
Guogeng Jia, Khaing Shwe Zin Thinn, Sun Ha Kim, Jiyoung Min, Sang-Keun Oh

Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.

转录因子(TF)通过与 DNA 结合来调节基因表达。植物中的 NAC 基因家族由影响植物发育和胁迫反应的关键转录因子组成。辣椒的全基因组显示了 100 多个 NAC 基因(CaNAC)。大多数 CaNAC TFs 的功能特征尚不清楚。在这项研究中,我们在辣椒中发现了一种新的 NAC TF--CaNAC4。在接种病原体 Xanthomonas axonopodis pv. vesicatoria race 3 和 X. axonopodis pv. glycines 8ra 以及使用植物激素水杨酸和脱落酸处理后,CaNAC4 的表达增加。我们研究了 CaNAC4 基因的功能特征及其在转基因烟草中耐盐性和抗病原防御中的作用。为了分析盐胁迫,野生型和 CaNAC4 转基因 N. benthamiana 植物的叶盘暴露在不同浓度的氯化钠中。经盐胁迫处理的野生型植株叶绿素的损失比 CaNAC4 转基因植株更为严重。为了分析 CaNAC4 在抗病原防御中的作用,研究人员用灰霉病菌的孢子悬浮液感染叶片。灰葡萄孢引起的病害逐渐加重,而 CaNAC4 转基因品系的症状更为明显。我们还研究了 CaNAC4 转基因植物的超敏反应(HR)。结果表明,野生型植株在受到细胞凋亡调节因子 BAX 的侵染后,会出现更强的超敏反应。总之,我们的研究结果表明,CaNAC4 可能会增强植物的耐盐性,并充当植物生物胁迫的负调控因子。
{"title":"Capsicum annuum NAC4 (CaNAC4) Is a Transcription Factor with Roles in Biotic and Abiotic Stresses.","authors":"Guogeng Jia, Khaing Shwe Zin Thinn, Sun Ha Kim, Jiyoung Min, Sang-Keun Oh","doi":"10.5423/PPJ.OA.07.2024.0104","DOIUrl":"https://doi.org/10.5423/PPJ.OA.07.2024.0104","url":null,"abstract":"<p><p>Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"512-524"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities. Ralstonia solanacearum 感染驱动马铃薯根瘤微生物群落的组装和功能适应。
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.06.2024.0086
Zhang Qing, Yang Jida, Fu Chengxiu, Yang Yanli, Liu Xia, Deng Sihe

Bacterial wilt caused by Ralstonia solanacearum is a destructive disease that affects potato production, leading to severe yield losses. Currently, little is known about the changes in the assembly and functional adaptation of potato rhizosphere microbial communities during different stages of R. solanacearum infection. In this study, using amplicon and metagenomic sequencing approaches, we analyzed the changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere across four stages of R. solanacearum infection. The results showed that R. solanacearum infection led to significant changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere, with various microbial properties (including α,β-diversity, species composition, and community ecological functions) all being driven by R. solanacearum infection. The relative abundance of some beneficial microorganisms in the potato rhizosphere, including Firmicutes, Bacillus, Pseudomonas, and Mortierella, decreased as the duration of infection increased. Moreover, the related microbial communities played a significant role in basic metabolism and signal transduction; however, the functions involved in soil C, N, and P transformation weakened. This study provides new insights into the dynamic changes in the composition and functions of potato rhizosphere microbial communities at different stages of R. solanacearum infection to adapt to the growth promotion or disease suppression strategies of host plants, which may provide guidance for formulating future strategies to regulate microbial communities for the integrated control of soil-borne plant diseases.

由 Ralstonia solanacearum 引起的细菌枯萎病是影响马铃薯生产的一种毁灭性病害,会导致严重的产量损失。目前,人们对 R. solanacearum 感染不同阶段马铃薯根瘤微生物群落的组成和功能适应性的变化知之甚少。在本研究中,我们利用扩增子和元基因组测序方法,分析了马铃薯根瘤菌感染四个阶段中细菌和真菌群落组成和功能的变化。结果表明,R. solanacearum 感染导致马铃薯根瘤菌群中细菌和真菌群落的组成和功能发生了显著变化,各种微生物特性(包括α、β-多样性、物种组成和群落生态功能)均受 R. solanacearum 感染的影响。随着感染持续时间的延长,马铃薯根瘤菌圈中一些有益微生物的相对丰度降低,其中包括真菌、芽孢杆菌、假单胞菌和莫蒂尔菌。此外,相关微生物群落在基础代谢和信号转导中发挥了重要作用,但参与土壤碳、氮、磷转化的功能却减弱了。本研究为了解马铃薯根瘤菌感染不同阶段根瘤微生物群落组成和功能的动态变化,以适应寄主植物的生长促进或病害抑制策略提供了新的见解,可为今后制定微生物群落调控策略,综合防治土传植物病害提供指导。
{"title":"Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities.","authors":"Zhang Qing, Yang Jida, Fu Chengxiu, Yang Yanli, Liu Xia, Deng Sihe","doi":"10.5423/PPJ.OA.06.2024.0086","DOIUrl":"https://doi.org/10.5423/PPJ.OA.06.2024.0086","url":null,"abstract":"<p><p>Bacterial wilt caused by Ralstonia solanacearum is a destructive disease that affects potato production, leading to severe yield losses. Currently, little is known about the changes in the assembly and functional adaptation of potato rhizosphere microbial communities during different stages of R. solanacearum infection. In this study, using amplicon and metagenomic sequencing approaches, we analyzed the changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere across four stages of R. solanacearum infection. The results showed that R. solanacearum infection led to significant changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere, with various microbial properties (including α,β-diversity, species composition, and community ecological functions) all being driven by R. solanacearum infection. The relative abundance of some beneficial microorganisms in the potato rhizosphere, including Firmicutes, Bacillus, Pseudomonas, and Mortierella, decreased as the duration of infection increased. Moreover, the related microbial communities played a significant role in basic metabolism and signal transduction; however, the functions involved in soil C, N, and P transformation weakened. This study provides new insights into the dynamic changes in the composition and functions of potato rhizosphere microbial communities at different stages of R. solanacearum infection to adapt to the growth promotion or disease suppression strategies of host plants, which may provide guidance for formulating future strategies to regulate microbial communities for the integrated control of soil-borne plant diseases.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"498-511"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Hibiscus Chlorotic Ringspot Virus-Derived vsiRNAs from Infected Hibiscus rosa-sinensis in China. 从中国受感染的木槿中鉴定木槿萎黄环斑病毒产生的 vsiRNA。
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.06.2024.0090
Han-Hong Lan, Luan-Mei Lu

Lots of progress have been made about pathogen system of Hibiscus rosa-sinensis and hibiscus chlorotic ringspot virus (HCRSV), however, interactions between H. rosa-sinensis and HCRSV remain largely unknown. Hereon, firstly, HCRSV infection in H. rosa-sinensis from Zhangzhou city of China was confirmed by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods. Secondly, sequence feature analysis showed the full-length sequence of HCRSV-ZZ was 3,909 nucleotides (nt) in length and had a similar genomic structure with other carmovirus. It contains a 5' untranslated region (UTR), followed by seven open reading frames encoding for P28, P23, P81, P8, P9, P38, and P25, and the last a 3-terminal UTR. Thirdly, HCRSV- ZZ-derived vsiRNAs were identified and characterized for the first time from disease H. rosa-sinensis through sRNA-seq to reveal interactions between pathogen ant plant host. It was shown that the majority of HCRSV-ZZ-derived vsiRNAs were 21 nt, 22 nt, and 20 nt, with 21 nt being most abundant. The 5'-terminal nucleotide of HCRSV-ZZ vsiRNAs preferred U and C. HCRSV-ZZ vsiRNAs derived predominantly (72%) from the viral genome positive-strand RNA. The distribution of HCRSV-ZZ vsiRNAs along the viral genome is generally even, with some hot spots and cold spots forming in local regions. These hot spots and cold spots could be corresponded to the regions of stem loop secondary structures forming in HCRSV-ZZ genome by nucleotide paring. Taken together, our findings certify HCRSV infection in H. rosa-sinensis and provide an insight into interaction between HCRSV and H. rosa-sinensis and contribute to the prevention and treatment of this virus.

目前,有关木槿病原系统和木槿叶枯环斑病病毒(HCRSV)的研究取得了很多进展,但木槿与HCRSV之间的相互作用仍是一个未知数。本文首先通过传统的电子显微镜、现代反转录聚合酶链反应和RNA-seq方法证实了中国漳州的木槿感染了HCRSV。其次,序列特征分析表明,HCRSV-ZZ的全长序列为3909个核苷酸(nt),与其他卡默病毒的基因组结构相似。它包含一个 5' 非翻译区(UTR),然后是七个开放阅读框,分别编码 P28、P23、P81、P8、P9、P38 和 P25,最后是一个 3 端 UTR。第三,通过sRNA-seq技术,首次从病株H. rosa-sinensis中鉴定并表征了HCRSV- ZZ衍生的vsiRNAs,揭示了病原体与植物宿主之间的相互作用。结果表明,HCRSV-ZZ 衍生的 vsiRNA 大多为 21 nt、22 nt 和 20 nt,其中 21 nt 的数量最多。HCRSV-ZZ vsiRNAs的5'-末端核苷酸倾向于U和C。HCRSV-ZZ vsiRNA 在病毒基因组上的分布总体上比较均匀,但在局部区域会形成一些热点和冷点。这些热点和冷点可能与 HCRSV-ZZ 基因组中通过核苷酸配位形成的茎环二级结构区域相对应。综上所述,我们的研究结果证明了 HCRSV 在玫瑰属植物中的感染情况,并揭示了 HCRSV 与玫瑰属植物之间的相互作用,有助于该病毒的预防和治疗。
{"title":"Characterization of Hibiscus Chlorotic Ringspot Virus-Derived vsiRNAs from Infected Hibiscus rosa-sinensis in China.","authors":"Han-Hong Lan, Luan-Mei Lu","doi":"10.5423/PPJ.OA.06.2024.0090","DOIUrl":"https://doi.org/10.5423/PPJ.OA.06.2024.0090","url":null,"abstract":"<p><p>Lots of progress have been made about pathogen system of Hibiscus rosa-sinensis and hibiscus chlorotic ringspot virus (HCRSV), however, interactions between H. rosa-sinensis and HCRSV remain largely unknown. Hereon, firstly, HCRSV infection in H. rosa-sinensis from Zhangzhou city of China was confirmed by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods. Secondly, sequence feature analysis showed the full-length sequence of HCRSV-ZZ was 3,909 nucleotides (nt) in length and had a similar genomic structure with other carmovirus. It contains a 5' untranslated region (UTR), followed by seven open reading frames encoding for P28, P23, P81, P8, P9, P38, and P25, and the last a 3-terminal UTR. Thirdly, HCRSV- ZZ-derived vsiRNAs were identified and characterized for the first time from disease H. rosa-sinensis through sRNA-seq to reveal interactions between pathogen ant plant host. It was shown that the majority of HCRSV-ZZ-derived vsiRNAs were 21 nt, 22 nt, and 20 nt, with 21 nt being most abundant. The 5&apos;-terminal nucleotide of HCRSV-ZZ vsiRNAs preferred U and C. HCRSV-ZZ vsiRNAs derived predominantly (72%) from the viral genome positive-strand RNA. The distribution of HCRSV-ZZ vsiRNAs along the viral genome is generally even, with some hot spots and cold spots forming in local regions. These hot spots and cold spots could be corresponded to the regions of stem loop secondary structures forming in HCRSV-ZZ genome by nucleotide paring. Taken together, our findings certify HCRSV infection in H. rosa-sinensis and provide an insight into interaction between HCRSV and H. rosa-sinensis and contribute to the prevention and treatment of this virus.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"415-424"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-identification of Korean Isolates in the Colletotrichum dematium, C. magnum, C. orchidearum, and C. orbiculare Species Complexes. 重新鉴定韩国鹅膏蕈菌(Colletotrichum dematium)、鹅膏蕈菌(C. magnum)、兰花蕈菌(C. orchidearum)和鹅膏蕈菌(C. orbiculare)物种群中的分离株。
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.05.2024.0081
Le Dinh Thao, Hyorim Choi, Donghun Kang, Anbazhagan Mageswari, Daseul Lee, Dong-Hyun Kim, In-Young Choi, Hyeon-Dong Shin, Seung-Beom Hong

A large number of species in the genus Colletotrichum have been reported as causal agents of anthracnose on crops and wild plants in Korea. Many Colletotrichum isolates from the country preserved in the Korean Agricultural Culture Collection (KACC) were previously identified based on host plants and morphological characteristics, and it may lead to species misidentification. Thus, accurate fungal species identification using multilocus sequence analyses is essential for understanding disease epidemiology and disease management strategies. In this study, combined DNA sequence analyses of internal transcribed spacer, gapdh, chs-1, his3, act, tub2, and gs were applied to re-identify 27 Colletotrichum isolates in KACC. The phylogenetic analyses showed that the isolates resulted in 11 known species, they belong to the C. dematium species complex (C. hemerocallidis, C. jinshuiense, and C. spinaciae), the C. magnum complex (C. kaifengense and C. cf. ovatense), the C. orchidearum complex (C. cattleyicola, C. plurivorum, C. reniforme, and C. sojae) and the C. orbiculare complex (C. malvarum and C. orbiculare). Of them, C. cattleyicola, C. hemerocallidis, C. kaifengense, and C. reniforme were unrecorded species in Korea. In the view of host-fungus combinations, 10 combinations are newly reported in the world and 12 are new reports in Korea, although their pathogenicity on the host was not confirmed.

据报道,韩国作物和野生植物炭疽病的病原为 Colletotrichum 属中的许多种。保存在韩国农业培养物保藏中心(KACC)中的许多来自韩国的 Colletotrichum 分离物以前都是根据寄主植物和形态特征进行鉴定的,这可能会导致物种鉴定错误。因此,利用多焦点序列分析准确鉴定真菌种类对于了解疾病流行病学和疾病管理策略至关重要。在本研究中,应用内部转录间隔、gapdh、chs-1、his3、act、tub2 和 gs 的联合 DNA 序列分析,对 KACC 的 27 株 Colletotrichum 分离物进行了重新鉴定。系统进化分析表明,这些分离株属于 11 个已知种,它们分别属于 C. dematium 种复合体(C. hemerocallidis、C. jinshuiense 和 C. spinaciae)、C.magnum complex(C. kaifengense 和 C. cf. ovatense)、C. orchidearum complex(C. cattleyicola、C. plurivorum、C. reniforme 和 C. sojae)以及 C. orbiculare complex(C. malvarum 和 C. orbiculare)。其中,C. cattleyicola、C. hemerocallidis、C. kaifengense 和 C. reniforme 是韩国未记录的物种。从宿主与真菌的组合来看,有 10 种组合是世界上新报道的,12 种是韩国新报道的,但它们对宿主的致病性尚未得到证实。
{"title":"Re-identification of Korean Isolates in the Colletotrichum dematium, C. magnum, C. orchidearum, and C. orbiculare Species Complexes.","authors":"Le Dinh Thao, Hyorim Choi, Donghun Kang, Anbazhagan Mageswari, Daseul Lee, Dong-Hyun Kim, In-Young Choi, Hyeon-Dong Shin, Seung-Beom Hong","doi":"10.5423/PPJ.OA.05.2024.0081","DOIUrl":"https://doi.org/10.5423/PPJ.OA.05.2024.0081","url":null,"abstract":"<p><p>A large number of species in the genus Colletotrichum have been reported as causal agents of anthracnose on crops and wild plants in Korea. Many Colletotrichum isolates from the country preserved in the Korean Agricultural Culture Collection (KACC) were previously identified based on host plants and morphological characteristics, and it may lead to species misidentification. Thus, accurate fungal species identification using multilocus sequence analyses is essential for understanding disease epidemiology and disease management strategies. In this study, combined DNA sequence analyses of internal transcribed spacer, gapdh, chs-1, his3, act, tub2, and gs were applied to re-identify 27 Colletotrichum isolates in KACC. The phylogenetic analyses showed that the isolates resulted in 11 known species, they belong to the C. dematium species complex (C. hemerocallidis, C. jinshuiense, and C. spinaciae), the C. magnum complex (C. kaifengense and C. cf. ovatense), the C. orchidearum complex (C. cattleyicola, C. plurivorum, C. reniforme, and C. sojae) and the C. orbiculare complex (C. malvarum and C. orbiculare). Of them, C. cattleyicola, C. hemerocallidis, C. kaifengense, and C. reniforme were unrecorded species in Korea. In the view of host-fungus combinations, 10 combinations are newly reported in the world and 12 are new reports in Korea, although their pathogenicity on the host was not confirmed.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"425-437"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cestrum tomentosum L.f. Extracts against Colletotrichum scovillei by Altering Cell Membrane Permeability and Inducing ROS Accumulation. Cestrum tomentosum L.f.提取物通过改变细胞膜渗透性和诱导ROS积累来对抗Colletotrichum scovillei。
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.07.2024.0105
Guogeng Jia, Sun Ha Kim, Jiyoung Min, Nelson Villalobos Zamora, Silvia Soto Montero, Soo-Yong Kim, Sang-Keun Oh

Chili pepper anthracnose, caused by Colletotrichum spp., is a significant biotic stress affecting chili fruits globally. While fungicide application is commonly used for disease management due to its efficiency and costeffectiveness, excessive use poses risks to human health and the environment. Botanical fungicides offer advantages such as rapid degradation and low toxicity to mammals, making them increasingly popular for sustainable plant disease control. This study investigated the antifungal properties of Cestrum tomentosum L.f. crude extracts (CTCE) against Colletotrichum scovillei. The results demonstrated that CTCE effectively inhibited conidia germination and germ tube elongation at 40 µg/ml concentrations. Moreover, CTCE exhibited strong antifungal activity against C. scovillei mycelial growth, with an EC50 value of 18.81 µg/ml. In vivo experiments confirmed the protective and curative effects of CTCE on chili pepper fruits infected with C. scovillei. XTT analysis showed that the CTCE could significantly inhibit the cell viability of C. scovillei. Mechanistic studies revealed that CTCE disrupted the plasma membrane integrity of C. scovillei and induced the accumulation of reactive oxygen species in hyphal cells. These findings highlight CTCE as a promising eco-friendly botanical fungicide for managing C. scovillei infections in chili peppers.

由 Colletotrichum spp.引起的辣椒炭疽病是影响全球辣椒果实的重要生物胁迫。虽然杀菌剂因其高效和成本效益高而常用于病害防治,但过量使用会对人类健康和环境造成危害。植物杀菌剂具有降解快、对哺乳动物毒性低等优点,因此在可持续植物病害控制方面越来越受欢迎。本研究调查了 Cestrum tomentosum L.f. 粗提取物(CTCE)对 Colletotrichum scovillei 的抗真菌特性。结果表明,在 40 µg/ml 的浓度下,CTCE 能有效抑制分生孢子的萌发和芽管的伸长。此外,CTCE 还表现出了很强的抗真菌活性,其 EC50 值为 18.81 µg/ml。体内实验证实,CTCE 对感染了 Scovillei 真菌的辣椒果实具有保护和治疗作用。XTT 分析表明,CTCE 能显著抑制 C. scovillei 的细胞活力。机理研究表明,CTCE 破坏了沙维氏菌质膜的完整性,并诱导了吸附细胞中活性氧的积累。这些研究结果突出表明,CTCE 是一种很有前途的生态友好型植物杀真菌剂,可用于控制辣椒中的沙星菌感染。
{"title":"Cestrum tomentosum L.f. Extracts against Colletotrichum scovillei by Altering Cell Membrane Permeability and Inducing ROS Accumulation.","authors":"Guogeng Jia, Sun Ha Kim, Jiyoung Min, Nelson Villalobos Zamora, Silvia Soto Montero, Soo-Yong Kim, Sang-Keun Oh","doi":"10.5423/PPJ.OA.07.2024.0105","DOIUrl":"https://doi.org/10.5423/PPJ.OA.07.2024.0105","url":null,"abstract":"<p><p>Chili pepper anthracnose, caused by Colletotrichum spp., is a significant biotic stress affecting chili fruits globally. While fungicide application is commonly used for disease management due to its efficiency and costeffectiveness, excessive use poses risks to human health and the environment. Botanical fungicides offer advantages such as rapid degradation and low toxicity to mammals, making them increasingly popular for sustainable plant disease control. This study investigated the antifungal properties of Cestrum tomentosum L.f. crude extracts (CTCE) against Colletotrichum scovillei. The results demonstrated that CTCE effectively inhibited conidia germination and germ tube elongation at 40 µg/ml concentrations. Moreover, CTCE exhibited strong antifungal activity against C. scovillei mycelial growth, with an EC50 value of 18.81 µg/ml. In vivo experiments confirmed the protective and curative effects of CTCE on chili pepper fruits infected with C. scovillei. XTT analysis showed that the CTCE could significantly inhibit the cell viability of C. scovillei. Mechanistic studies revealed that CTCE disrupted the plasma membrane integrity of C. scovillei and induced the accumulation of reactive oxygen species in hyphal cells. These findings highlight CTCE as a promising eco-friendly botanical fungicide for managing C. scovillei infections in chili peppers.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"475-485"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness. 拟南芥 MORC1 和 MED9 相互作用,调控防御基因表达和植物健壮性
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.07.2024.0107
Ji Chul Nam, Padam Shekhar Bhatt, April Bonnard, Dinesh Pujara, Hong-Gu Kang

Arabidopsis MORC1 (Microrchidia) is required for multiple levels of immunity. We identified 14 MORC1-interacting proteins (MIPs) via yeast two-hybrid screening, eight of which have confirmed or putative nuclear-associated functions. While a few MIP mutants displayed altered bacterial resistance, MIP13 was unusual. The MIP13 mutant was susceptible to Pseudomonas syringae, but when combined with morc1/2, it regained wild-type resistance; notably, morc1/2 is susceptible to the same pathogen. MIP13 encodes MED9, a mediator complex component that interfaces with RNA polymerase II and transcription factors. Expression analysis of defense genes PR1, PR2, and PR5 in response to avirulent P. syringae revealed that morc1/2 med9 expressed these genes in a slow but sustained manner, unlike its lower-order mutants. This expression pattern may explain the restored resistance and suggests that the interplay of MORC1/2 and MED9 might be important in curbing defense responses to maintain fitness. Indeed, repeated challenges with avirulent P. syringae triggered significant growth inhibition in morc1/2 med9, indicating that MED9 and MORC1 may play an important role in balancing defense and growth. Furthermore, the in planta interaction of MED9 and MORC1 occurred 24 h, not 6 h, postinfection, suggesting that the interaction functions late in the defense signaling. Our study reveals a complex interplay between MORC1 and MED9 in maintaining an optimal balance between defense and growth in Arabidopsis.

拟南芥的 MORC1(小噬菌体)是多层次免疫所必需的。我们通过酵母双杂交筛选确定了 14 个 MORC1 相互作用蛋白(MIPs),其中 8 个已证实或推测具有核相关功能。虽然一些 MIP 突变体显示出改变的细菌抗性,但 MIP13 却不同寻常。MIP13 突变体对丁香假单胞菌(Pseudomonas syringae)易感,但当它与 morc1/2 结合后,又恢复了野生型的抗性;值得注意的是,morc1/2 对相同的病原体也易感。MIP13 编码 MED9,这是一种介导复合体成分,与 RNA 聚合酶 II 和转录因子相互作用。通过分析防御基因 PR1、PR2 和 PR5 对无毒性 P. syringae 的反应,发现与低阶突变体不同,morc1/2 med9 以缓慢但持续的方式表达这些基因。这种表达模式可能解释了抗性恢复的原因,并表明 MORC1/2 和 MED9 的相互作用在抑制防御反应以保持健康方面可能很重要。事实上,无毒的 P. syringae 对 morc1/2 med9 的反复挑战会引发显著的生长抑制,这表明 MED9 和 MORC1 可能在平衡防御和生长方面发挥了重要作用。此外,MED9 和 MORC1 在植物体内的相互作用发生在感染后 24 小时,而不是 6 小时,这表明这种相互作用在防御信号传导的后期才发挥作用。我们的研究揭示了 MORC1 和 MED9 在拟南芥中维持防御和生长之间最佳平衡的复杂相互作用。
{"title":"Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness.","authors":"Ji Chul Nam, Padam Shekhar Bhatt, April Bonnard, Dinesh Pujara, Hong-Gu Kang","doi":"10.5423/PPJ.OA.07.2024.0107","DOIUrl":"https://doi.org/10.5423/PPJ.OA.07.2024.0107","url":null,"abstract":"<p><p>Arabidopsis MORC1 (Microrchidia) is required for multiple levels of immunity. We identified 14 MORC1-interacting proteins (MIPs) via yeast two-hybrid screening, eight of which have confirmed or putative nuclear-associated functions. While a few MIP mutants displayed altered bacterial resistance, MIP13 was unusual. The MIP13 mutant was susceptible to Pseudomonas syringae, but when combined with morc1/2, it regained wild-type resistance; notably, morc1/2 is susceptible to the same pathogen. MIP13 encodes MED9, a mediator complex component that interfaces with RNA polymerase II and transcription factors. Expression analysis of defense genes PR1, PR2, and PR5 in response to avirulent P. syringae revealed that morc1/2 med9 expressed these genes in a slow but sustained manner, unlike its lower-order mutants. This expression pattern may explain the restored resistance and suggests that the interplay of MORC1/2 and MED9 might be important in curbing defense responses to maintain fitness. Indeed, repeated challenges with avirulent P. syringae triggered significant growth inhibition in morc1/2 med9, indicating that MED9 and MORC1 may play an important role in balancing defense and growth. Furthermore, the in planta interaction of MED9 and MORC1 occurred 24 h, not 6 h, postinfection, suggesting that the interaction functions late in the defense signaling. Our study reveals a complex interplay between MORC1 and MED9 in maintaining an optimal balance between defense and growth in Arabidopsis.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"438-450"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis WRKY55 Transcription Factor Enhances Soft Rot Disease Resistance with ORA59. 拟南芥 WRKY55 转录因子通过 ORA59 增强软腐病抗性
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.08.2024.0126
Ji Eun Kang, Hyunsun Kim, Kyungyoung Song, Changhyun Choi, Yun Ju Kim, Duk-Ju Hwang, Eui-Hwan Chung

Pectobacterium is a major bacterial causal agent leading to soft rot disease in host plants. With the Arabidopsis-Pectobacterium pathosystem, we investigated the function of an Arabidopsis thaliana WRKY55 during defense responses to Pectobacterium carotovorum ssp. carotovorum (Pcc). Pcc-infection specifically induced WRKY55 gene expression. The overexpression of WRKY55 was resistant to the Pcc infection, while wrky55 knockout plants compromised the defense responses against Pcc. WRKY55 expression was mediated via Arabidopsis COI1-dependent signaling pathway showing that WRKY55 can contribute to the gene expression of jasmonic acid-mediated defense marker genes such as PDF1.2 and LOX2. WRKY55 physically interacts with Arabidopsis ORA59 facilitating the expression of PDF1.2</i. Our results suggest that WRKY55 can function as a positive regulator for resistance against Pcc in Arabidopsis.

果胶杆菌是导致寄主植物软腐病的主要细菌病原。通过拟南芥-果胶杆菌病理系统,我们研究了拟南芥 WRKY55 在果胶杆菌(Pcc)防御反应过程中的功能。Pcc 感染能特异性诱导 WRKY55 基因的表达。过表达 WRKY55 的植株能抵抗 Pcc 感染,而 WRKY55 基因敲除植株则会影响对 Pcc 的防御反应。WRKY55 的表达是通过拟南芥 COI1 依赖性信号通路介导的,这表明 WRKY55 能促进茉莉酸介导的防御标记基因(如 PDF1.2 和 LOX2)的基因表达。WRKY55 与拟南芥 ORA59 发生物理相互作用,促进了 PDF1.2</i 的表达。我们的研究结果表明,WRKY55 可作为拟南芥抗 Pcc 的正调控因子。
{"title":"Arabidopsis WRKY55 Transcription Factor Enhances Soft Rot Disease Resistance with ORA59.","authors":"Ji Eun Kang, Hyunsun Kim, Kyungyoung Song, Changhyun Choi, Yun Ju Kim, Duk-Ju Hwang, Eui-Hwan Chung","doi":"10.5423/PPJ.OA.08.2024.0126","DOIUrl":"https://doi.org/10.5423/PPJ.OA.08.2024.0126","url":null,"abstract":"<p><p>Pectobacterium is a major bacterial causal agent leading to soft rot disease in host plants. With the Arabidopsis-Pectobacterium pathosystem, we investigated the function of an Arabidopsis thaliana WRKY55 during defense responses to Pectobacterium carotovorum ssp. carotovorum (Pcc). Pcc-infection specifically induced WRKY55 gene expression. The overexpression of WRKY55 was resistant to the Pcc infection, while wrky55 knockout plants compromised the defense responses against Pcc. WRKY55 expression was mediated via Arabidopsis COI1-dependent signaling pathway showing that WRKY55 can contribute to the gene expression of jasmonic acid-mediated defense marker genes such as PDF1.2 and LOX2. WRKY55 physically interacts with Arabidopsis ORA59 facilitating the expression of PDF1.2&lt;/i. Our results suggest that WRKY55 can function as a positive regulator for resistance against Pcc in Arabidopsis.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"537-550"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Identification and Genetic Diversity Analysis of Papaya Leaf Curl China Virus Infecting Ageratum conyzoides. 感染Ageratum conyzoides的中国木瓜卷叶病毒的分子鉴定和遗传多样性分析
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.NT.04.2024.0066
Liping Zhang, Shujie Wu, Meisheng Zhao, Hussein Ghanem, Gentu Wu, Mingjun Li, Ling Qing

Papaya leaf curl China virus (PaLCuCNV) is a damaging plant pathogen causing substantial losses to crop. The complete genomes of three PaLCuCNV isolates from Ageratum conyzoides were obtained and combined with the 68 reference isolates in GenBank for comprehensive genetic diversity analyses using specialized computational tools. Sequence alignment revealed nucleotide sequence similarity ranging from 85.3% to 99.9% among 71 PaLCuCNV isolates. Employing phylogenetic analysis, 71 PaLCuCNV sequences were clustered into five groups, with no significant correlation observed between genetic differentiation and either host species or geographical origin. Additionally, 13 recombination events across all PaLCuCNV isolates were identified. Genetic diversity analysis indicated the ongoing expansion and evolution of PaLCuCNV populations, supported by a neutral model. Moreover, significant genetic differentiation was observed among distinct viral populations, primarily attributed to genetic drift. Overall, our findings provide valuable insights into the detection, genetic variation, and evolutionary dynamics of PaLCuCNV.

木瓜卷叶病毒(PaLCuCNV)是一种危害性植物病原体,会给作物造成重大损失。研究人员从Ageratum conyzoides中获得了3个PaLCuCNV分离株的完整基因组,并将其与GenBank中的68个参考分离株结合起来,利用专门的计算工具进行了全面的遗传多样性分析。序列比对结果显示,71 个 PaLCuCNV 分离物的核苷酸序列相似度从 85.3% 到 99.9% 不等。通过系统进化分析,71个PaLCuCNV序列被聚类为5个组,没有观察到基因分化与宿主物种或地理起源之间有明显的相关性。此外,在所有 PaLCuCNV 分离物中发现了 13 个重组事件。遗传多样性分析表明,PaLCuCNV 群体在不断扩大和进化,这得到了中性模型的支持。此外,在不同的病毒种群之间观察到了明显的遗传分化,这主要归因于遗传漂变。总之,我们的研究结果为 PaLCuCNV 的检测、遗传变异和进化动态提供了有价值的见解。
{"title":"Molecular Identification and Genetic Diversity Analysis of Papaya Leaf Curl China Virus Infecting Ageratum conyzoides.","authors":"Liping Zhang, Shujie Wu, Meisheng Zhao, Hussein Ghanem, Gentu Wu, Mingjun Li, Ling Qing","doi":"10.5423/PPJ.NT.04.2024.0066","DOIUrl":"https://doi.org/10.5423/PPJ.NT.04.2024.0066","url":null,"abstract":"<p><p>Papaya leaf curl China virus (PaLCuCNV) is a damaging plant pathogen causing substantial losses to crop. The complete genomes of three PaLCuCNV isolates from Ageratum conyzoides were obtained and combined with the 68 reference isolates in GenBank for comprehensive genetic diversity analyses using specialized computational tools. Sequence alignment revealed nucleotide sequence similarity ranging from 85.3% to 99.9% among 71 PaLCuCNV isolates. Employing phylogenetic analysis, 71 PaLCuCNV sequences were clustered into five groups, with no significant correlation observed between genetic differentiation and either host species or geographical origin. Additionally, 13 recombination events across all PaLCuCNV isolates were identified. Genetic diversity analysis indicated the ongoing expansion and evolution of PaLCuCNV populations, supported by a neutral model. Moreover, significant genetic differentiation was observed among distinct viral populations, primarily attributed to genetic drift. Overall, our findings provide valuable insights into the detection, genetic variation, and evolutionary dynamics of PaLCuCNV.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"551-558"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Resistance Acquisition and Mechanisms in Erwinia amylovora against Agrochemicals Used for Fire Blight Control. 比较 Erwinia amylovora 对用于控制火疫病的农用化学品的抗性获得和机制。
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.07.2024.0106
Hyeonheui Ham, Ga-Ram Oh, Yong Hwan Lee, Yong Hoon Lee

Agrochemicals containing antibiotics are authorized to manage fire blight that has been occurring in Korea since 2015. The minimum inhibitory concentration (MIC) of each antibiotic against Erwinia amylovora, the causal pathogen of fire blight, has increased over the years due to the pathogen's frequent exposure to antibiotics, indicating the necessity to prepare for the emergence of antibiotic resistance. In this study, E. amylovora was exposed to stepwise increasing concentrations of eight different agrochemicals, each containing single or mixed antibiotics, and gene mutation and changes in MIC were assessed. Streptomycin and oxolinic acid induced an amino acid substitution in RpsL and GyrA, respectively, resulting in a rapid increase in MIC. Oxytetracycline initially induced amino acid substitutions or frameshifts in AcrR, followed by substitutions of 30S small ribosomal protein subunit S10 or AcrB, further increasing MIC. E. amylovora acquired resistance in the order of oxolinic acid, streptomycin, and oxytetracycline at varying exposure frequencies. Resistance acquisition was slower against agrochemicals containing mixed antibiotics than those with single antibiotics. However, gene mutations conferring antibiotic resistance emerged sequentially to both antibiotics in the mixed formulations. Results suggested that frequent application of mixed antibiotics could lead to the emergence of multidrug-resistant E. amylovora isolates. This study provided essential insights into preventing the emergence of antibiotic-resistant E. amylovora and understanding the underlying mechanisms of resistance acquisition.

含有抗生素的农用化学品被授权用于管理 2015 年以来在韩国发生的火疫病。由于火枯萎病的病原体 Erwinia amylovora 经常接触抗生素,每种抗生素对其的最小抑菌浓度(MIC)逐年增加,这表明有必要为抗生素耐药性的出现做好准备。在这项研究中,E. amylovora 接触了浓度逐步增加的八种不同农用化学品,每种化学品都含有单一或混合抗生素,并对基因突变和 MIC 变化进行了评估。链霉素和草甘膦分别诱导了 RpsL 和 GyrA 的氨基酸替代,导致 MIC 快速增加。土霉素最初会诱导 AcrR 的氨基酸替换或帧转移,随后 30S 小核糖体蛋白亚基 S10 或 AcrB 也会发生替换,从而进一步提高 MIC。在不同的接触频率下,淀粉样球菌获得抗药性的顺序依次为氧氟沙星、链霉素和土霉素。与含有单一抗生素的农用化学品相比,对含有混合抗生素的农用化学品产生抗药性的速度较慢。然而,对混合制剂中的两种抗生素产生抗药性的基因突变是依次出现的。研究结果表明,频繁使用混合抗生素可能会导致耐多药淀粉菌分离株的出现。这项研究为防止出现抗生素耐药性淀粉样大肠杆菌和了解耐药性获得的基本机制提供了重要的启示。
{"title":"Comparison of Resistance Acquisition and Mechanisms in Erwinia amylovora against Agrochemicals Used for Fire Blight Control.","authors":"Hyeonheui Ham, Ga-Ram Oh, Yong Hwan Lee, Yong Hoon Lee","doi":"10.5423/PPJ.OA.07.2024.0106","DOIUrl":"https://doi.org/10.5423/PPJ.OA.07.2024.0106","url":null,"abstract":"<p><p>Agrochemicals containing antibiotics are authorized to manage fire blight that has been occurring in Korea since 2015. The minimum inhibitory concentration (MIC) of each antibiotic against Erwinia amylovora, the causal pathogen of fire blight, has increased over the years due to the pathogen's frequent exposure to antibiotics, indicating the necessity to prepare for the emergence of antibiotic resistance. In this study, E. amylovora was exposed to stepwise increasing concentrations of eight different agrochemicals, each containing single or mixed antibiotics, and gene mutation and changes in MIC were assessed. Streptomycin and oxolinic acid induced an amino acid substitution in RpsL and GyrA, respectively, resulting in a rapid increase in MIC. Oxytetracycline initially induced amino acid substitutions or frameshifts in AcrR, followed by substitutions of 30S small ribosomal protein subunit S10 or AcrB, further increasing MIC. E. amylovora acquired resistance in the order of oxolinic acid, streptomycin, and oxytetracycline at varying exposure frequencies. Resistance acquisition was slower against agrochemicals containing mixed antibiotics than those with single antibiotics. However, gene mutations conferring antibiotic resistance emerged sequentially to both antibiotics in the mixed formulations. Results suggested that frequent application of mixed antibiotics could lead to the emergence of multidrug-resistant E. amylovora isolates. This study provided essential insights into preventing the emergence of antibiotic-resistant E. amylovora and understanding the underlying mechanisms of resistance acquisition.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"525-536"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Validation of an SNP Marker for Identifying Xanthomonas oryzae pv. oryzae Thai Isolates That Break xa5-Mediated Bacterial Blight Resistance in Rice. 开发和验证 SNP 标记,用于识别破坏 xa5 介导的水稻细菌性枯萎病抗性的泰国黄单胞菌。
IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.5423/PPJ.OA.04.2024.0070
Tebogo Balone, Ananda Nuryadi Pratama, Werapat Chansongkram, Thanita Boonsrangsom, Kawee Sujipuli, Kumrop Ratanasut

Xanthomonas oryzae pv. oryzae (Xoo) is a pathogenic bacterium responsible for bacterial blight (BB) disease in rice, primarily mediated by the interaction between the plant and pathogen. The virulence mechanism involves the activation of the Sugars Will Eventually be Exported Transporter (SWEET) gene family in rice by transcription activator-like effectors derived from Xoo. The BB resistance gene xa5 has been identified as one of the most effective genes against Thai Xoo isolates, but xa5-mediated resistance-breaking Xoo strains have emerged. This study aimed to develop a single nucleotide polymorphism (SNP) marker for precise identification of xa5-mediated resistance-breaking Xoo. Comparative genomics of Thai Xoo isolates Xoo16PK001 and Xoo16PK002, which were incompatible and compatible with rice variety IRBB5 carrying xa5, respectively, identified eight SNP positions for the development of an SNP marker. The SNP marker XooE6 yields a specific 1,143 bp PCR product unique to Xoo16PK002. Screening 61 Thai isolates using XooE6 identified two positives: Xoo20PL010 and Xoo20UT002. Inoculation tests on rice varieties IRBB5 and IRBB13 demonstrated compatibility with IRBB5 and incompatibility with IRBB13, which bears Xa5 and xa13. Xoo16PK001 (XooE6-negative) showed different virulence. Inoculation on IRBB21 harboring Xa5, Xa13, and Xa21 resulted in partial resistance to both XooE6-positive and -negative strains. XooE6-positive strains up-regulated SWEET11 and suppressed SWEET14 in IRBB5, while Xoo16PK001 slightly induced SWEET11 but activated SWEET14 in IRBB13. This highlights the potential of XooE6 to identify xa5-mediated resistance-breaking Xoo strains and elucidate their pathogenic mechanisms through the upregulation of SWEET11.

黄单胞菌(Xanthomonas oryzae pv. oryzae,Xoo)是一种致病细菌,主要通过植物与病原体之间的相互作用引起水稻细菌性枯萎病(BB)。其致病机制包括 Xoo 衍生的转录激活剂样效应物激活水稻中的糖类最终会被导出转运体(SWEET)基因家族。BB 抗性基因 xa5 已被确定为对泰国 Xoo 分离物最有效的基因之一,但 xa5 介导的抗性破坏 Xoo 株系已经出现。本研究旨在开发一种单核苷酸多态性(SNP)标记,用于精确鉴定 xa5 介导的抗性突破 Xoo。泰国 Xoo 分离物 Xoo16PK001 和 Xoo16PK002 分别与携带 xa5 的水稻品种 IRBB5 不相容和相容,它们的比较基因组学发现了 8 个 SNP 位置,可用于开发 SNP 标记。SNP 标记 XooE6 产生了 Xoo16PK002 所特有的 1,143 bp PCR 产物。使用 XooE6 对 61 个泰国分离物进行筛选,发现两个阳性:Xoo20PL010 和 Xoo20UT002。对水稻品种 IRBB5 和 IRBB13 的接种试验表明,Xoo16PK001 与 IRBB5 相符,而与 IRBB13 不相符,因为 IRBB13 含有 Xa5 和 Xa13。Xoo16PK001(XooE6阴性)表现出不同的毒力。接种到带有 Xa5、Xa13 和 Xa21 的 IRBB21 上,可产生对 XooE6 阳性和阴性菌株的部分抗性。在 IRBB5 中,XooE6 阳性菌株上调 SWEET11,抑制 SWEET14,而在 IRBB13 中,Xoo16PK001 会轻微诱导 SWEET11,但激活 SWEET14。这凸显了 XooE6 通过上调 SWEET11 来识别 xa5 介导的抗性破坏 Xoo 菌株并阐明其致病机制的潜力。
{"title":"Development and Validation of an SNP Marker for Identifying Xanthomonas oryzae pv. oryzae Thai Isolates That Break xa5-Mediated Bacterial Blight Resistance in Rice.","authors":"Tebogo Balone, Ananda Nuryadi Pratama, Werapat Chansongkram, Thanita Boonsrangsom, Kawee Sujipuli, Kumrop Ratanasut","doi":"10.5423/PPJ.OA.04.2024.0070","DOIUrl":"https://doi.org/10.5423/PPJ.OA.04.2024.0070","url":null,"abstract":"<p><p>Xanthomonas oryzae pv. oryzae (Xoo) is a pathogenic bacterium responsible for bacterial blight (BB) disease in rice, primarily mediated by the interaction between the plant and pathogen. The virulence mechanism involves the activation of the Sugars Will Eventually be Exported Transporter (SWEET) gene family in rice by transcription activator-like effectors derived from Xoo. The BB resistance gene xa5 has been identified as one of the most effective genes against Thai Xoo isolates, but xa5-mediated resistance-breaking Xoo strains have emerged. This study aimed to develop a single nucleotide polymorphism (SNP) marker for precise identification of xa5-mediated resistance-breaking Xoo. Comparative genomics of Thai Xoo isolates Xoo16PK001 and Xoo16PK002, which were incompatible and compatible with rice variety IRBB5 carrying xa5, respectively, identified eight SNP positions for the development of an SNP marker. The SNP marker XooE6 yields a specific 1,143 bp PCR product unique to Xoo16PK002. Screening 61 Thai isolates using XooE6 identified two positives: Xoo20PL010 and Xoo20UT002. Inoculation tests on rice varieties IRBB5 and IRBB13 demonstrated compatibility with IRBB5 and incompatibility with IRBB13, which bears Xa5 and xa13. Xoo16PK001 (XooE6-negative) showed different virulence. Inoculation on IRBB21 harboring Xa5, Xa13, and Xa21 resulted in partial resistance to both XooE6-positive and -negative strains. XooE6-positive strains up-regulated SWEET11 and suppressed SWEET14 in IRBB5, while Xoo16PK001 slightly induced SWEET11 but activated SWEET14 in IRBB13. This highlights the potential of XooE6 to identify xa5-mediated resistance-breaking Xoo strains and elucidate their pathogenic mechanisms through the upregulation of SWEET11.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"451-462"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Pathology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1