Study on the impact of bowtie filter on photon-counting CT imaging.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-10-28 DOI:10.1088/1361-6560/ad8858
Xin Zhang, Jixiong Xie, Ting Su, Jiongtao Zhu, Dongmei Xia, Hairong Zheng, Dong Liang, Yongshuai Ge
{"title":"Study on the impact of bowtie filter on photon-counting CT imaging.","authors":"Xin Zhang, Jixiong Xie, Ting Su, Jiongtao Zhu, Dongmei Xia, Hairong Zheng, Dong Liang, Yongshuai Ge","doi":"10.1088/1361-6560/ad8858","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The aim of this study was to investigate the impact of the bowtie filter on the image quality of the photon-counting detector (PCD) based CT imaging.<i>Approach.</i>Numerical simulations were conducted to investigate the impact of bowtie filters on image uniformity using two water phantoms, with tube potentials ranging from 60 to 140 kVp with a step of 5 kVp. Subsequently, benchtop PCD-CT imaging experiments were performed to verify the observations from the numerical simulations. Additionally, various correction methods were validated through these experiments.<i>Main results.</i>It was found that the use of a bowtie filter significantly alters the uniformity of PCD-CT images, depending on the size of the object and the x-ray spectrum. Two notable effects were observed: the capping effect and the flattening effect. Furthermore, it was demonstrated that the conventional beam hardening correction method could effectively mitigate such non-uniformity in PCD-CT images, provided that dedicated calibration parameters were used.<i>Significance.</i>It was demonstrated that the incorporation of a bowtie filter results in varied image artifacts in PCD-CT imaging under different conditions. Certain image correction methods can effectively mitigate and reduce these artifacts, thereby enhancing the overall quality of PCD-CT images.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8858","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.The aim of this study was to investigate the impact of the bowtie filter on the image quality of the photon-counting detector (PCD) based CT imaging.Approach.Numerical simulations were conducted to investigate the impact of bowtie filters on image uniformity using two water phantoms, with tube potentials ranging from 60 to 140 kVp with a step of 5 kVp. Subsequently, benchtop PCD-CT imaging experiments were performed to verify the observations from the numerical simulations. Additionally, various correction methods were validated through these experiments.Main results.It was found that the use of a bowtie filter significantly alters the uniformity of PCD-CT images, depending on the size of the object and the x-ray spectrum. Two notable effects were observed: the capping effect and the flattening effect. Furthermore, it was demonstrated that the conventional beam hardening correction method could effectively mitigate such non-uniformity in PCD-CT images, provided that dedicated calibration parameters were used.Significance.It was demonstrated that the incorporation of a bowtie filter results in varied image artifacts in PCD-CT imaging under different conditions. Certain image correction methods can effectively mitigate and reduce these artifacts, thereby enhancing the overall quality of PCD-CT images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弓形滤波器对光子计数 CT 成像影响的研究
研究目的本研究旨在探讨弓形滤波器对基于光子计数探测器(PCD)的 CT 成像质量的影响:使用两个水模型进行数值模拟,研究弓形滤波器对图像均匀性的影响,管电势范围为 60 到 140 kVp,步幅为 5 kVp。随后,进行了台式 PCD-CT 成像实验,以验证数值模拟的观察结果。此外,还通过这些实验验证了各种校正方法:研究发现,使用弓形滤光片会显著改变 PCD-CT 图像的均匀性,这取决于物体的大小和 X 射线光谱。观察到两种明显的效应:封盖效应和扁平效应。此外,研究还证明,只要使用专用的校准参数,传统的光束硬化校正方法就能有效缓解 PCD-CT 图像中的这种不均匀性:研究表明,在不同条件下,加入弓形滤波器会导致 PCD-CT 成像出现不同的图像伪影。某些图像校正方法可以有效缓解和减少这些伪影,从而提高 PCD-CT 图像的整体质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Noise & mottle suppression methods for cumulative Cherenkov images of radiation therapy delivery. Quantitative assessment of areal bone mineral density using multi-energy localizer radiographs from photon-counting detector CT. TMAA-net: tensor-domain multi-planal anti-aliasing network for sparse-view CT image reconstruction. Imaging error reduction in radial cine-MRI with deep learning-based intra-frame motion compensation. Investigation of scatter energy window width and count levels for deep learning-based attenuation map estimation in cardiac SPECT/CT imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1