Akhilesh K. Chaurasia , Hemant B. Patil , Bal Krishna , Vadakanthara R. Subramaniam , Prafullachandra V. Sane , Aniruddha P. Sane
{"title":"The transition from vegetative growth to flowering is associated with suppression of the MUSA CENTRORADIALIS (MCN ) gene family in day neutral banana","authors":"Akhilesh K. Chaurasia , Hemant B. Patil , Bal Krishna , Vadakanthara R. Subramaniam , Prafullachandra V. Sane , Aniruddha P. Sane","doi":"10.1016/j.plantsci.2024.112289","DOIUrl":null,"url":null,"abstract":"<div><div>Control over flowering time is essential for reproductive success and survival of plants. The <em>TERMINAL FLOWER1</em>/<em>CENTRORADIALIS/BROTHER OF FT AND TFL1</em> (<em>TFL1</em>/<em>CEN/BFT</em>) genes are key suppressor of flowering time that prevents premature conversion of the apical meristem into a floral meristem thereby allowing indeterminate vegetative growth. We have identified and characterized seven members of banana <em>TFL1/CEN/BFT</em> gene family (<em>MCN1–7</em>). All genes except <em>MCN6</em> show overlapping expression in the shoot apical meristem as well as leaves from the initial to mid-vegetative phases. Their expression is collectively reduced to their lowest just prior to flowering initiation at around 171 days, 226 days and 297 days, respectively, in three differently flowering varieties. Thereafter, there is steady increase in their transcript levels in the apical meristem as well as leaves that correlates with the development and growth of the inflorescence. The ability of three of the genes, <em>MCNs1–3</em>, to functionally complement the <em>tfl1–14</em> mutant of Arabidopsis provides additional evidence for structural and functional similarities of the <em>MCN</em> <!--> proteins to TFL1 even in a distantly related plant. Together, these results suggest that the MCN family in banana is associated with vegetative growth and suppression of flowering time initiation as well as indeterminate growth of inflorescence.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112289"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224003169","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Control over flowering time is essential for reproductive success and survival of plants. The TERMINAL FLOWER1/CENTRORADIALIS/BROTHER OF FT AND TFL1 (TFL1/CEN/BFT) genes are key suppressor of flowering time that prevents premature conversion of the apical meristem into a floral meristem thereby allowing indeterminate vegetative growth. We have identified and characterized seven members of banana TFL1/CEN/BFT gene family (MCN1–7). All genes except MCN6 show overlapping expression in the shoot apical meristem as well as leaves from the initial to mid-vegetative phases. Their expression is collectively reduced to their lowest just prior to flowering initiation at around 171 days, 226 days and 297 days, respectively, in three differently flowering varieties. Thereafter, there is steady increase in their transcript levels in the apical meristem as well as leaves that correlates with the development and growth of the inflorescence. The ability of three of the genes, MCNs1–3, to functionally complement the tfl1–14 mutant of Arabidopsis provides additional evidence for structural and functional similarities of the MCN proteins to TFL1 even in a distantly related plant. Together, these results suggest that the MCN family in banana is associated with vegetative growth and suppression of flowering time initiation as well as indeterminate growth of inflorescence.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.