PagNAC2a promotes phloem fiber development by regulating PagATL2 in poplar

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Science Pub Date : 2024-10-11 DOI:10.1016/j.plantsci.2024.112283
Yu Guo , Yang-Xin Shi , Shuo Song , Yan-Qiu Zhao , Meng-Zhu Lu
{"title":"PagNAC2a promotes phloem fiber development by regulating PagATL2 in poplar","authors":"Yu Guo ,&nbsp;Yang-Xin Shi ,&nbsp;Shuo Song ,&nbsp;Yan-Qiu Zhao ,&nbsp;Meng-Zhu Lu","doi":"10.1016/j.plantsci.2024.112283","DOIUrl":null,"url":null,"abstract":"<div><div>Phloem fiber is a key component of phloem tissue and is involved in supporting its structural integrity. NAC domain transcription factors are master switches that regulate secondary cell wall (SCW) biosynthesis in xylem fibers, but the mechanism by which NACs regulate phloem fiber development remains unexplored. Here, a <em>NAC2</em>-like gene in poplar, <em>PagNAC2a</em>, was shown to be involved in phloem fiber differentiation. qRT-PCR and GUS staining revealed that <em>PagNAC2a</em> was specifically expressed in the phloem zone of poplar stems. The overexpression of <em>PagNAC2a</em> in poplar increased plant biomass by increasing plant height, stem diameter, and leaf area. Stem anatomy analysis revealed that overexpression of <em>PagNAC2a</em> resulted in enhanced phloem fiber differentiation and cell wall deposition. In addition, PagNAC2a directly upregulated the expression of <em>PagATL2</em>, a gene involved in phloem development, as revealed by yeast one hybrid (Y1H) and electrophoretic mobility shift assay (EMSA) assays. Overall, we proposed that the PagNAC2a was a positive regulator of phloem fiber development in poplar, and these results provided insights into the molecular mechanisms involved in the differentiation of phloem fibers.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224003108","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phloem fiber is a key component of phloem tissue and is involved in supporting its structural integrity. NAC domain transcription factors are master switches that regulate secondary cell wall (SCW) biosynthesis in xylem fibers, but the mechanism by which NACs regulate phloem fiber development remains unexplored. Here, a NAC2-like gene in poplar, PagNAC2a, was shown to be involved in phloem fiber differentiation. qRT-PCR and GUS staining revealed that PagNAC2a was specifically expressed in the phloem zone of poplar stems. The overexpression of PagNAC2a in poplar increased plant biomass by increasing plant height, stem diameter, and leaf area. Stem anatomy analysis revealed that overexpression of PagNAC2a resulted in enhanced phloem fiber differentiation and cell wall deposition. In addition, PagNAC2a directly upregulated the expression of PagATL2, a gene involved in phloem development, as revealed by yeast one hybrid (Y1H) and electrophoretic mobility shift assay (EMSA) assays. Overall, we proposed that the PagNAC2a was a positive regulator of phloem fiber development in poplar, and these results provided insights into the molecular mechanisms involved in the differentiation of phloem fibers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PagNAC2a 通过调节 PagATL2 促进杨树韧皮部纤维的发育。
韧皮部纤维是韧皮部组织的关键组成部分,参与支持其结构的完整性。NAC结构域转录因子是调控木质部纤维次生细胞壁(SCW)生物合成的主开关,但NAC调控韧皮部纤维发育的机制仍有待探索。qRT-PCR 和 GUS 染色显示,PagNAC2a 在杨树茎的韧皮部特异表达。在杨树中过表达 PagNAC2a 能增加株高、茎直径和叶面积,从而增加植物的生物量。茎的解剖分析表明,过表达 PagNAC2a 能增强韧皮部纤维的分化和细胞壁的沉积。此外,酵母一杂交(Y1H)和电泳迁移试验(EMSA)显示,PagNAC2a直接上调了参与韧皮部发育的基因PagATL2的表达。总之,我们认为 PagNAC2a 是杨树韧皮部纤维发育的正向调节因子,这些结果为了解韧皮部纤维分化的分子机制提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
期刊最新文献
Duplicate MADS-box genes with split roles and a genetic regulatory network of floral development in long-homostyle common buckwheat. Functional analysis of (E)-β-farnesene synthases involved in accumulation of (E)-β-farnesene in German chamomile (Matricaria chamomilla L.) Identification of the fructose 1,6-bisphosphate aldolase (FBA) family genes in maize and analysis of the phosphorylation regulation of ZmFBA8. Mutation of rice SM1 enhances solid leaf midrib formation and increases methane emissions Functional analysis of the extraplastidial TRX system in germination and early stages of development of Arabidopsis thaliana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1