Guangchao Liu , Zhe Zhang , Ye Tian , Jie Yang , Xingfeng Xu , Xin Liu
{"title":"VvbZIP22 regulates quercetin synthesis to enhances cold resistance in grape","authors":"Guangchao Liu , Zhe Zhang , Ye Tian , Jie Yang , Xingfeng Xu , Xin Liu","doi":"10.1016/j.plantsci.2024.112293","DOIUrl":null,"url":null,"abstract":"<div><div>Grapes are one of the important fruit crops widely cultivated in the world, with high nutritional and economic value. However, with the intensification of global warming, extreme low temperature has seriously affected the development of the grape industry. Quercetin is a highly antioxidant active substance that can enhance the tolerance of plants to external environmental stress, but its function and mechanism in response to low-temperature stress in grapes are still unclear. Here, we found that grapes accumulate more quercetin under low-temperature stress, and exogenous quercetin can significantly improve the cold resistance of grapes. The key quercetin synthesis gene <em>VvFLS1</em> (<em>flavanol synthase 1</em>) is up-regulated after low-temperature treatment, and overexpression of <em>VvFLS1</em> increases quercetin content and enhances the cold resistance of grape. Yeast one-hybrid and dual luciferase reporter systems demonstrate that VvbZIP22 (<em>basic-leucine zipper 22</em>) directly binds to the <em>VvFLS1</em> promoter, and VvbZIP22 has cold-induced expression characteristics. Overexpression of VvbZIP22 significantly improves the cold resistance of grape. The above results indicate that quercetin plays an important role in the response of grapes to low-temperature stress. Under low temperature, VvbZIP22 can mediate quercetin synthesis through regulating <em>VvFLS1</em>, alleviate oxidative damage, and improve the cold resistance of grapes.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224003200","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Grapes are one of the important fruit crops widely cultivated in the world, with high nutritional and economic value. However, with the intensification of global warming, extreme low temperature has seriously affected the development of the grape industry. Quercetin is a highly antioxidant active substance that can enhance the tolerance of plants to external environmental stress, but its function and mechanism in response to low-temperature stress in grapes are still unclear. Here, we found that grapes accumulate more quercetin under low-temperature stress, and exogenous quercetin can significantly improve the cold resistance of grapes. The key quercetin synthesis gene VvFLS1 (flavanol synthase 1) is up-regulated after low-temperature treatment, and overexpression of VvFLS1 increases quercetin content and enhances the cold resistance of grape. Yeast one-hybrid and dual luciferase reporter systems demonstrate that VvbZIP22 (basic-leucine zipper 22) directly binds to the VvFLS1 promoter, and VvbZIP22 has cold-induced expression characteristics. Overexpression of VvbZIP22 significantly improves the cold resistance of grape. The above results indicate that quercetin plays an important role in the response of grapes to low-temperature stress. Under low temperature, VvbZIP22 can mediate quercetin synthesis through regulating VvFLS1, alleviate oxidative damage, and improve the cold resistance of grapes.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.