Shixiong Lu, Min Li, Yongjuan Cheng, Huimin Gou, Lili Che, Guoping Liang, Juan Mao
{"title":"Genome-wide identification of Aux/IAA gene family members in grape and functional analysis of VaIAA3 in response to cold stress.","authors":"Shixiong Lu, Min Li, Yongjuan Cheng, Huimin Gou, Lili Che, Guoping Liang, Juan Mao","doi":"10.1007/s00299-024-03353-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Twenty-five VvIAA genes and eighteen VaIAA genes were identified from Pinot Noir and Shanputao, respectively. The overexpression of VaIAA3 in transgenic Arabidopsis increased cold tolerance by regulating auxin, ABA and ethylene signaling. Aux/IAA genes are key genes involved in regulating auxin signal transduction in plants. Although IAA genes have been characterized in various plant species, the role of IAA genes in grape cold resistance is unclear. To further explore the members of the Aux/IAA gene family in grape and their functions, in this study, using genomic data for Pinot Noir (Vitis vinifera cv. 'Pinot Noir') and Shanputao (Vitis amurensis), 25 VvIAA genes and 18 VaIAA genes were identified. The VaIAA genes presented different expression patterns at five different temperatures (28 ± 1 °C, 5 ± 1 °C, 0 ± 1 °C, -5 ± 1 °C, and -10 ± 1 °C) according to qRT‑PCR results. VaIAA3 was selected as a candidate gene for further functional analysis because of its high expression level under low-temperature stress. Subcellular localization experiments revealed that VaIAA3 was localized in the nucleus. Additionally, under 4 °C treatment for 24 h, relative expression level of VaIAA3, antioxidant enzyme activity, survival rate, and cold-responsive gene expression in three transgenic lines (OE-1, OE-2, OE-3) were greater, whereas relative electrolytic conductivity (REC), malondialdehyde (MDA) content and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) content were lower than those of the wild type (WT). Transcriptome sequencing analysis revealed that VaIAA3 regulated cold stress resistance in Arabidopsis thaliana (Arabidopsis) through pathways involving auxin, ABA, JA, or ethylene. Importantly, heterologous overexpression of VaIAA3 increased the resistance of Arabidopsis to cold stress, which provides a theoretical basis for the further use of VaIAA3 to improve cold resistance in grape.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03353-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Twenty-five VvIAA genes and eighteen VaIAA genes were identified from Pinot Noir and Shanputao, respectively. The overexpression of VaIAA3 in transgenic Arabidopsis increased cold tolerance by regulating auxin, ABA and ethylene signaling. Aux/IAA genes are key genes involved in regulating auxin signal transduction in plants. Although IAA genes have been characterized in various plant species, the role of IAA genes in grape cold resistance is unclear. To further explore the members of the Aux/IAA gene family in grape and their functions, in this study, using genomic data for Pinot Noir (Vitis vinifera cv. 'Pinot Noir') and Shanputao (Vitis amurensis), 25 VvIAA genes and 18 VaIAA genes were identified. The VaIAA genes presented different expression patterns at five different temperatures (28 ± 1 °C, 5 ± 1 °C, 0 ± 1 °C, -5 ± 1 °C, and -10 ± 1 °C) according to qRT‑PCR results. VaIAA3 was selected as a candidate gene for further functional analysis because of its high expression level under low-temperature stress. Subcellular localization experiments revealed that VaIAA3 was localized in the nucleus. Additionally, under 4 °C treatment for 24 h, relative expression level of VaIAA3, antioxidant enzyme activity, survival rate, and cold-responsive gene expression in three transgenic lines (OE-1, OE-2, OE-3) were greater, whereas relative electrolytic conductivity (REC), malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were lower than those of the wild type (WT). Transcriptome sequencing analysis revealed that VaIAA3 regulated cold stress resistance in Arabidopsis thaliana (Arabidopsis) through pathways involving auxin, ABA, JA, or ethylene. Importantly, heterologous overexpression of VaIAA3 increased the resistance of Arabidopsis to cold stress, which provides a theoretical basis for the further use of VaIAA3 to improve cold resistance in grape.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.