Mapping the physiological changes in sleep regulation across infancy and young childhood.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2024-10-21 eCollection Date: 2024-10-01 DOI:10.1371/journal.pcbi.1012541
Lachlan Webb, Andrew J K Phillips, James A Roberts
{"title":"Mapping the physiological changes in sleep regulation across infancy and young childhood.","authors":"Lachlan Webb, Andrew J K Phillips, James A Roberts","doi":"10.1371/journal.pcbi.1012541","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep patterns in infancy and early childhood vary greatly and change rapidly during development. In adults, sleep patterns are regulated by interactions between neuronal populations in the brainstem and hypothalamus, driven by the circadian and sleep homeostatic processes. However, the neurophysiological mechanisms underlying the sleep patterns and their variations across infancy and early childhood are poorly understood. We investigated whether a well-established mathematical model for sleep regulation in adults can model infant sleep characteristics and explain the physiological basis for developmental changes. By fitting longitudinal sleep data spanning 2 to 540 days after birth, we inferred parameter trajectories across age. We found that the developmental changes in sleep patterns are consistent with a faster accumulation and faster clearance of sleep homeostatic pressure in infancy and a weaker circadian rhythm in early infancy. We also find greater sensitivity to phase-delaying effects of light in infancy and early childhood. These findings reveal fundamental mechanisms that regulate sleep in infancy and early childhood. Given the critical role of sleep in healthy neurodevelopment, this framework could be used to pinpoint pathophysiological mechanisms and identify ways to improve sleep quality in early life.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep patterns in infancy and early childhood vary greatly and change rapidly during development. In adults, sleep patterns are regulated by interactions between neuronal populations in the brainstem and hypothalamus, driven by the circadian and sleep homeostatic processes. However, the neurophysiological mechanisms underlying the sleep patterns and their variations across infancy and early childhood are poorly understood. We investigated whether a well-established mathematical model for sleep regulation in adults can model infant sleep characteristics and explain the physiological basis for developmental changes. By fitting longitudinal sleep data spanning 2 to 540 days after birth, we inferred parameter trajectories across age. We found that the developmental changes in sleep patterns are consistent with a faster accumulation and faster clearance of sleep homeostatic pressure in infancy and a weaker circadian rhythm in early infancy. We also find greater sensitivity to phase-delaying effects of light in infancy and early childhood. These findings reveal fundamental mechanisms that regulate sleep in infancy and early childhood. Given the critical role of sleep in healthy neurodevelopment, this framework could be used to pinpoint pathophysiological mechanisms and identify ways to improve sleep quality in early life.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绘制婴幼儿时期睡眠调节的生理变化图。
婴幼儿时期的睡眠模式千差万别,而且在发育过程中变化迅速。在成人中,睡眠模式受脑干和下丘脑中神经元群之间的相互作用调节,并受昼夜节律和睡眠平衡过程的驱动。然而,人们对睡眠模式的神经生理机制及其在婴幼儿时期的变化知之甚少。我们研究了一个成熟的成人睡眠调节数学模型能否模拟婴儿睡眠特征并解释发育变化的生理基础。通过拟合出生后 2 到 540 天的纵向睡眠数据,我们推断出了各年龄段的参数轨迹。我们发现,睡眠模式的发育变化与婴儿期睡眠平衡压力的快速积累和快速清除以及婴儿早期较弱的昼夜节律相一致。我们还发现,婴儿期和幼儿期对光的相位延迟效应更为敏感。这些发现揭示了调节婴幼儿期睡眠的基本机制。鉴于睡眠在健康神经发育中的关键作用,这一框架可用于确定病理生理机制,并找出改善生命早期睡眠质量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
A computational analysis of the oncogenic and anti-tumor immunity role of P4HA3 in human cancers. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. During haptic communication, the central nervous system compensates distinctly for delay and noise. Structure-aware annotation of leucine-rich repeat domains. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1