{"title":"Metabolic cross-feeding interactions modulate the dynamic community structure in microbial fuel cell under variable organic loading wastewaters.","authors":"Natchapon Srinak, Porntip Chiewchankaset, Saowalak Kalapanulak, Pornpan Panichnumsin, Treenut Saithong","doi":"10.1371/journal.pcbi.1012533","DOIUrl":null,"url":null,"abstract":"<p><p>The efficiency of microbial fuel cells (MFCs) in industrial wastewater treatment is profoundly influenced by the microbial community, which can be disrupted by variable industrial operations. Although microbial guilds linked to MFC performance under specific conditions have been identified, comprehensive knowledge of the convergent community structure and pathways of adaptation is lacking. Here, we developed a microbe-microbe interaction genome-scale metabolic model (mmGEM) based on metabolic cross-feeding to study the adaptation of microbial communities in MFCs treating sulfide-containing wastewater from a canned-pineapple factory. The metabolic model encompassed three major microbial guilds: sulfate-reducing bacteria (SRB), methanogens (MET), and sulfide-oxidizing bacteria (SOB). Our findings revealed a shift from an SOB-dominant to MET-dominant community as organic loading rates (OLRs) increased, along with a decline in MFC performance. The mmGEM accurately predicted microbial relative abundance at low OLRs (L-OLRs) and adaptation to high OLRs (H-OLRs). The simulations revealed constraints on SOB growth under H-OLRs due to reduced sulfate-sulfide (S) cycling and acetate cross-feeding with SRB. More cross-fed metabolites from SRB were diverted to MET, facilitating their competitive dominance. Assessing cross-feeding dynamics under varying OLRs enabled the execution of practical scenario-based simulations to explore the potential impact of elevated acidity levels on SOB growth and MFC performance. This work highlights the role of metabolic cross-feeding in shaping microbial community structure in response to high OLRs. The insights gained will inform the development of effective strategies for implementing MFC technology in real-world industrial environments.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521316/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012533","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The efficiency of microbial fuel cells (MFCs) in industrial wastewater treatment is profoundly influenced by the microbial community, which can be disrupted by variable industrial operations. Although microbial guilds linked to MFC performance under specific conditions have been identified, comprehensive knowledge of the convergent community structure and pathways of adaptation is lacking. Here, we developed a microbe-microbe interaction genome-scale metabolic model (mmGEM) based on metabolic cross-feeding to study the adaptation of microbial communities in MFCs treating sulfide-containing wastewater from a canned-pineapple factory. The metabolic model encompassed three major microbial guilds: sulfate-reducing bacteria (SRB), methanogens (MET), and sulfide-oxidizing bacteria (SOB). Our findings revealed a shift from an SOB-dominant to MET-dominant community as organic loading rates (OLRs) increased, along with a decline in MFC performance. The mmGEM accurately predicted microbial relative abundance at low OLRs (L-OLRs) and adaptation to high OLRs (H-OLRs). The simulations revealed constraints on SOB growth under H-OLRs due to reduced sulfate-sulfide (S) cycling and acetate cross-feeding with SRB. More cross-fed metabolites from SRB were diverted to MET, facilitating their competitive dominance. Assessing cross-feeding dynamics under varying OLRs enabled the execution of practical scenario-based simulations to explore the potential impact of elevated acidity levels on SOB growth and MFC performance. This work highlights the role of metabolic cross-feeding in shaping microbial community structure in response to high OLRs. The insights gained will inform the development of effective strategies for implementing MFC technology in real-world industrial environments.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.