{"title":"Atorvastatin loaded glycerosomal patch as an effective transdermal drug delivery: optimization and evaluation.","authors":"Pravin Patil, Mrunal Rahangdale, Krutika Sawant","doi":"10.1080/20415990.2024.2408218","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> The study explores glycerosomes as effective vesicular systems for transdermal delivery of atorvastatin (ATO) to overcome drawbacks related to its oral administration.<b>Methodology:</b> The objectives of this study were to formulate, by thin-film hydration method, optimize using definitive screening design and evaluate ATO-loaded glycerosomes (ATOG) which were then incorporated into patch followed by the evaluation of glycerosomes containing different concentration of glycerol.<b>Results & discussion:</b> Vesicle size, Polydispersity index (PDI), zeta potential, entrapment efficiency and loading capacity of spherical ATOG (0-30%w/w) showed 137.3-192d.nm, 0.292-0.403, -3.81 to-6.76mV, 80.03-92.77% and 5.80-6.40%, respectively. <i>In-vitro</i> release study showed sustained release, increased skin permeability and better cell viability than pure drug. ATOG patches showed greater skin permeability than pure drug and ATO-liposomal patches.<b>Conclusion:</b> The study concludes that ATOGs are promising for effective transdermal delivery.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-20"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2024.2408218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The study explores glycerosomes as effective vesicular systems for transdermal delivery of atorvastatin (ATO) to overcome drawbacks related to its oral administration.Methodology: The objectives of this study were to formulate, by thin-film hydration method, optimize using definitive screening design and evaluate ATO-loaded glycerosomes (ATOG) which were then incorporated into patch followed by the evaluation of glycerosomes containing different concentration of glycerol.Results & discussion: Vesicle size, Polydispersity index (PDI), zeta potential, entrapment efficiency and loading capacity of spherical ATOG (0-30%w/w) showed 137.3-192d.nm, 0.292-0.403, -3.81 to-6.76mV, 80.03-92.77% and 5.80-6.40%, respectively. In-vitro release study showed sustained release, increased skin permeability and better cell viability than pure drug. ATOG patches showed greater skin permeability than pure drug and ATO-liposomal patches.Conclusion: The study concludes that ATOGs are promising for effective transdermal delivery.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.