Hui Zhou, Tiantian Hong, Xi Chen, Conghui Su, Binyu Teng, Wan Xi, Jean Lud Cadet, Yihong Yang, Fengji Geng, Yuzheng Hu
{"title":"Glutamate concentration of medial prefrontal cortex is inversely associated with addictive behaviors: a translational study.","authors":"Hui Zhou, Tiantian Hong, Xi Chen, Conghui Su, Binyu Teng, Wan Xi, Jean Lud Cadet, Yihong Yang, Fengji Geng, Yuzheng Hu","doi":"10.1038/s41398-024-03145-x","DOIUrl":null,"url":null,"abstract":"<p><p>In both preclinical and clinical settings, dysregulated frontostriatal circuits have been identified as the underlying neural substrates of compulsive seeking/taking behaviors manifested in substance use disorders and behavioral addictions including internet gaming disorder (IGD). However, the neurochemical substrates for these disorders remain elusive. The lack of comprehensive cognitive assessments in animal models has hampered our understanding of neural plasticity in addiction from these models. In this study, combining data from a rat model of compulsive taking/seeking and human participants with various levels of IGD severity, we investigated the relationship between regional glutamate (Glu) concentration and addictive behaviors. We found that Glu levels were significantly lower in the prelimbic cortex (PrL) of rats after 20-days of methamphetamine self-administration (SA), compared to controls. Glu concentration after a punishment phase negatively correlated with acute drug-seeking behavior. In addition, changes in Glu levels from a drug naïve state to compulsive drug taking patterns negatively correlated with drug-seeking during both acute and prolonged abstinence. The human data revealed a significant negative correlation between Glu concentration in the dorsal anterior cingulate cortex (dACC), the human PrL counterpart, and symptoms of IGD. Interestingly, there was a positive correlation between Glu levels in the dACC and self-control, as well as mindful awareness. Further analysis revealed that the dACC Glu concentration mediated the relationship between self-control/mindful awareness and IGD symptoms. These results provide convergent evidence for a protective role of dACC/PrL in addiction, suggesting interventions to enhance dACC glutamatergic functions as a potential strategy for addiction prevention and treatment.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"433"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03145-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
In both preclinical and clinical settings, dysregulated frontostriatal circuits have been identified as the underlying neural substrates of compulsive seeking/taking behaviors manifested in substance use disorders and behavioral addictions including internet gaming disorder (IGD). However, the neurochemical substrates for these disorders remain elusive. The lack of comprehensive cognitive assessments in animal models has hampered our understanding of neural plasticity in addiction from these models. In this study, combining data from a rat model of compulsive taking/seeking and human participants with various levels of IGD severity, we investigated the relationship between regional glutamate (Glu) concentration and addictive behaviors. We found that Glu levels were significantly lower in the prelimbic cortex (PrL) of rats after 20-days of methamphetamine self-administration (SA), compared to controls. Glu concentration after a punishment phase negatively correlated with acute drug-seeking behavior. In addition, changes in Glu levels from a drug naïve state to compulsive drug taking patterns negatively correlated with drug-seeking during both acute and prolonged abstinence. The human data revealed a significant negative correlation between Glu concentration in the dorsal anterior cingulate cortex (dACC), the human PrL counterpart, and symptoms of IGD. Interestingly, there was a positive correlation between Glu levels in the dACC and self-control, as well as mindful awareness. Further analysis revealed that the dACC Glu concentration mediated the relationship between self-control/mindful awareness and IGD symptoms. These results provide convergent evidence for a protective role of dACC/PrL in addiction, suggesting interventions to enhance dACC glutamatergic functions as a potential strategy for addiction prevention and treatment.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.