Zhaohui Liu , Xiang Zhou , Hantao Yang , Qiude Zhang , Liang Zhou , Yun Wu , Quanquan Liu , Weicheng Yan , Junjie Song , Mingyue Ding , Ming Yuchi , Wu Qiu
{"title":"Reconstruction of reflection ultrasound computed tomography with sparse transmissions using conditional generative adversarial network","authors":"Zhaohui Liu , Xiang Zhou , Hantao Yang , Qiude Zhang , Liang Zhou , Yun Wu , Quanquan Liu , Weicheng Yan , Junjie Song , Mingyue Ding , Ming Yuchi , Wu Qiu","doi":"10.1016/j.ultras.2024.107486","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasound computed tomography (UCT) has attracted increasing attention due to its potential for early breast cancer diagnosis and screening. Synthetic aperture imaging is a widely used means for reflection UCT image reconstruction, due to its ability to produce isotropic and high-resolution anatomical images. However, obtaining fully sampled UCT data from all directions over multiple transmissions is a time-consuming scanning process. Even though sparse transmission strategy could mitigate the data acquisition complication, image quality reconstructed by traditional Delay and Sum (DAS) methods may degrade substantially. This study presents a deep learning framework based on a conditional generative adversarial network, UCT-GAN, to efficiently reconstruct reflection UCT image from sparse transmission data. The evaluation experiments using breast imaging data in vivo show that the proposed UCT-GAN is able to generate high-quality reflection UCT images when using 8 transmissions only, which are comparable to that reconstructed from the data acquired by 512 transmissions. Quantitative assessment in terms of peak signal-to-noise ratio (PSNR), normalized mean square error (NMSE), and structural similarity index measurement (SSIM) show that the proposed UCT-GAN is able to efficiently reconstruct high-quality reflection UCT images from sparsely available transmission data, outperforming several other methods, such as RED-GAN, DnCNN-GAN, BM3D. In the experiment of 8-transmission sparse data, the PSNR is 29.52 dB, and the SSIM is 0.7619. The proposed method has the potential of being integrated into the UCT imaging system for clinical usage.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X2400249X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound computed tomography (UCT) has attracted increasing attention due to its potential for early breast cancer diagnosis and screening. Synthetic aperture imaging is a widely used means for reflection UCT image reconstruction, due to its ability to produce isotropic and high-resolution anatomical images. However, obtaining fully sampled UCT data from all directions over multiple transmissions is a time-consuming scanning process. Even though sparse transmission strategy could mitigate the data acquisition complication, image quality reconstructed by traditional Delay and Sum (DAS) methods may degrade substantially. This study presents a deep learning framework based on a conditional generative adversarial network, UCT-GAN, to efficiently reconstruct reflection UCT image from sparse transmission data. The evaluation experiments using breast imaging data in vivo show that the proposed UCT-GAN is able to generate high-quality reflection UCT images when using 8 transmissions only, which are comparable to that reconstructed from the data acquired by 512 transmissions. Quantitative assessment in terms of peak signal-to-noise ratio (PSNR), normalized mean square error (NMSE), and structural similarity index measurement (SSIM) show that the proposed UCT-GAN is able to efficiently reconstruct high-quality reflection UCT images from sparsely available transmission data, outperforming several other methods, such as RED-GAN, DnCNN-GAN, BM3D. In the experiment of 8-transmission sparse data, the PSNR is 29.52 dB, and the SSIM is 0.7619. The proposed method has the potential of being integrated into the UCT imaging system for clinical usage.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.