Change trend and attribution analysis of leaf area index in the East African Plateau from 1982 to 2020.

Q3 Environmental Science 应用生态学报 Pub Date : 2024-09-18 DOI:10.13287/j.1001-9332.202409.021
Yan Ma, Tie-Xi Chen, Xin Chen, Yin-Miao Xiao, Sheng-Jie Zhou, Sheng-Zhen Wang
{"title":"Change trend and attribution analysis of leaf area index in the East African Plateau from 1982 to 2020.","authors":"Yan Ma, Tie-Xi Chen, Xin Chen, Yin-Miao Xiao, Sheng-Jie Zhou, Sheng-Zhen Wang","doi":"10.13287/j.1001-9332.202409.021","DOIUrl":null,"url":null,"abstract":"<p><p>The ecosystems on the East African Plateau are crucial for maintaining the biodiversity, water resource balance, and ecological equilibrium of the African continent. However, the spatiotemporal variations of vegetation and the driving factors remain unclear. We analyzed leaf area index (LAI) change trends in the East African Plateau based on the GIMMS LAI4g dataset and further conducted attribution analysis combining temperature and precipitation data, as well as 10 Dynamic Global Vegetation Models (DGVMs) in TRNEDY v9. The results showed that LAI of the East African Plateau had a modest change trend from 1982 to 1999 (2.5×10<sup>-3</sup> m<sup>2</sup>·m<sup>-2</sup>·a<sup>-1</sup>), but significantly increased from 2000 to 2020 (5.2×10<sup>-3</sup> m<sup>2</sup>·m<sup>-2</sup>·a<sup>-1</sup>), which was 2.1 times faster than that during 1982-1999. Temperature and precipitation had weak correlations with LAI from 1982 to 1999, but showed significant correlations from 2000 to 2020. The DGVMs demonstrated consistent attribution results, with temperature and precipitation contributing significantly more to the LAI variations from 2000 to 2020 compared to the period from 1982 to 1999. The results highlighted the key role of climate change in driving vegetation greening on the East African Plateau during 2000-2020, which could provide important evidence for ecological conservation and sustainable development strategies in the region.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 9","pages":"2561-2570"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202409.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The ecosystems on the East African Plateau are crucial for maintaining the biodiversity, water resource balance, and ecological equilibrium of the African continent. However, the spatiotemporal variations of vegetation and the driving factors remain unclear. We analyzed leaf area index (LAI) change trends in the East African Plateau based on the GIMMS LAI4g dataset and further conducted attribution analysis combining temperature and precipitation data, as well as 10 Dynamic Global Vegetation Models (DGVMs) in TRNEDY v9. The results showed that LAI of the East African Plateau had a modest change trend from 1982 to 1999 (2.5×10-3 m2·m-2·a-1), but significantly increased from 2000 to 2020 (5.2×10-3 m2·m-2·a-1), which was 2.1 times faster than that during 1982-1999. Temperature and precipitation had weak correlations with LAI from 1982 to 1999, but showed significant correlations from 2000 to 2020. The DGVMs demonstrated consistent attribution results, with temperature and precipitation contributing significantly more to the LAI variations from 2000 to 2020 compared to the period from 1982 to 1999. The results highlighted the key role of climate change in driving vegetation greening on the East African Plateau during 2000-2020, which could provide important evidence for ecological conservation and sustainable development strategies in the region.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1982-2020年东非高原叶面积指数的变化趋势和归因分析。
东非高原的生态系统对维持非洲大陆的生物多样性、水资源平衡和生态平衡至关重要。然而,植被的时空变化及其驱动因素仍不清楚。我们基于 GIMMS LAI4g 数据集分析了东非高原叶面积指数(LAI)的变化趋势,并结合温度和降水数据以及 TRNEDY v9 中的 10 个动态全球植被模型(DGVMs)进一步进行了归因分析。结果表明,1982-1999 年间,东非高原的 LAI 变化趋势不大(2.5×10-3 m2-m-2-a-1),但 2000-2020 年间显著增加(5.2×10-3 m2-m-2-a-1),是 1982-1999 年间的 2.1 倍。温度和降水在 1982-1999 年间与 LAI 的相关性较弱,但在 2000-2020 年间与 LAI 的相关性显著。DGVMs 显示了一致的归因结果,与 1982 年至 1999 年期间相比,温度和降水对 2000 年至 2020 年期间 LAI 变化的贡献要大得多。研究结果凸显了气候变化在推动 2000-2020 年期间东非高原植被绿化方面的关键作用,可为该地区的生态保护和可持续发展战略提供重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
应用生态学报
应用生态学报 Environmental Science-Ecology
CiteScore
2.50
自引率
0.00%
发文量
11393
期刊介绍:
期刊最新文献
Effects of simulated precipitation changes on soil respiration:Progress and prospects. Effects of simulated warming on content, fractions and chemical structure of soil organic carbon:Progress and prospects. Application and prospect of landscape ecology in territorial spatial planning. Application of species distribution models in predicting the distribution of marine macrobenthos. Azimuthal and radial variations in sap flow and its effects on the estimation of transpiration for Picea mongolica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1