External Validation of a Commercial Artificial Intelligence Algorithm on a Diverse Population for Detection of False Negative Breast Cancers.

IF 2 Q3 ONCOLOGY Journal of Breast Imaging Pub Date : 2024-10-14 DOI:10.1093/jbi/wbae058
S Reed Plimpton, Hannah Milch, Christopher Sears, James Chalfant, Anne Hoyt, Cheryce Fischer, William Hsu, Melissa Joines
{"title":"External Validation of a Commercial Artificial Intelligence Algorithm on a Diverse Population for Detection of False Negative Breast Cancers.","authors":"S Reed Plimpton, Hannah Milch, Christopher Sears, James Chalfant, Anne Hoyt, Cheryce Fischer, William Hsu, Melissa Joines","doi":"10.1093/jbi/wbae058","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>There are limited data on the application of artificial intelligence (AI) on nonenriched, real-world screening mammograms. This work aims to evaluate the ability of AI to detect false negative cancers not detected at the time of screening when reviewed by the radiologist alone.</p><p><strong>Methods: </strong>A commercially available AI algorithm was retrospectively applied to patients undergoing screening full-field digital mammography (FFDM) or digital breast tomosynthesis (DBT) at a single institution from 2010 to 2019. Ground truth was established based on 1-year follow-up data. Descriptive statistics were performed with attention focused on AI detection of false negative cancers within these subsets.</p><p><strong>Results: </strong>A total of 26 694 FFDM and 3183 DBT examinations were analyzed. Artificial intelligence was able to detect 7/13 false negative cancers (54%) in the FFDM cohort and 4/10 (40%) in the DBT cohort on the preceding screening mammogram that was interpreted as negative by the radiologist. Of these, 4 in the FFDM cohort and 4 in the DBT cohort were identified in breast densities of C or greater. False negative cancers detected by AI were predominantly luminal A invasive malignancies (9/11, 82%). Artificial intelligence was able to detect these false negative cancers a median time of 272 days sooner in the FFDM cohort and 248 days sooner in the DBT cohort compared to the radiologist.</p><p><strong>Conclusion: </strong>Artificial intelligence was able to detect cancers at the time of screening that were missed by the radiologist. Prospective studies are needed to evaluate the synergy of AI and the radiologist in real-world settings, especially on DBT examinations.</p>","PeriodicalId":43134,"journal":{"name":"Journal of Breast Imaging","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Breast Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jbi/wbae058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: There are limited data on the application of artificial intelligence (AI) on nonenriched, real-world screening mammograms. This work aims to evaluate the ability of AI to detect false negative cancers not detected at the time of screening when reviewed by the radiologist alone.

Methods: A commercially available AI algorithm was retrospectively applied to patients undergoing screening full-field digital mammography (FFDM) or digital breast tomosynthesis (DBT) at a single institution from 2010 to 2019. Ground truth was established based on 1-year follow-up data. Descriptive statistics were performed with attention focused on AI detection of false negative cancers within these subsets.

Results: A total of 26 694 FFDM and 3183 DBT examinations were analyzed. Artificial intelligence was able to detect 7/13 false negative cancers (54%) in the FFDM cohort and 4/10 (40%) in the DBT cohort on the preceding screening mammogram that was interpreted as negative by the radiologist. Of these, 4 in the FFDM cohort and 4 in the DBT cohort were identified in breast densities of C or greater. False negative cancers detected by AI were predominantly luminal A invasive malignancies (9/11, 82%). Artificial intelligence was able to detect these false negative cancers a median time of 272 days sooner in the FFDM cohort and 248 days sooner in the DBT cohort compared to the radiologist.

Conclusion: Artificial intelligence was able to detect cancers at the time of screening that were missed by the radiologist. Prospective studies are needed to evaluate the synergy of AI and the radiologist in real-world settings, especially on DBT examinations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不同人群中对商用人工智能算法进行外部验证,以检测假阴性乳腺癌。
目的:关于人工智能(AI)在非浓缩的真实世界乳房X光筛查中的应用,目前只有有限的数据。这项工作旨在评估人工智能检测筛查时未检测到的假阴性癌症的能力:方法:对2010年至2019年期间在一家机构接受全场数字乳腺X光造影术(FFDM)或数字乳腺断层合成术(DBT)筛查的患者回顾性地应用了一种市售的人工智能算法。根据 1 年的随访数据确定了基本事实。进行了描述性统计,重点关注这些子集中假阴性癌症的人工智能检测:共分析了 26 694 次 FFDM 和 3183 次 DBT 检查。人工智能能够在 FFDM 组群中检测出 7/13 例假阴性癌症(54%),在 DBT 组群中检测出 4/10 例假阴性癌症(40%),这些假阴性癌症是在放射科医生解释为阴性的前一次乳房 X 光筛查中发现的。其中,FFDM 组群中的 4 例和 DBT 组群中的 4 例被确定为乳腺密度为 C 或更高。人工智能检测出的假阴性癌症主要是管腔A型浸润性恶性肿瘤(9/11,82%)。与放射科医生相比,人工智能检测出这些假阴性癌症的中位时间在FFDM队列中提前了272天,在DBT队列中提前了248天:结论:人工智能能够在筛查时发现放射科医生漏诊的癌症。需要进行前瞻性研究,以评估人工智能和放射科医生在实际环境中的协同作用,尤其是在 DBT 检查中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
20.00%
发文量
81
期刊最新文献
Performance of Abbreviated Breast MRI in High-Risk Patients in a Tertiary Care Academic Medical Center. Developing a Career as a Clinician-Educator in Breast Imaging. Unknown Case: Non-mass Enhancement on Baseline MRI. Developing Financial Acumen as a Breast Imaging Radiologist. Methodological Considerations in Evaluating Breast Cancer Screening Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1