Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI.

IF 3.3 Q2 ENGINEERING, BIOMEDICAL International Journal of Biomedical Imaging Pub Date : 2024-10-11 eCollection Date: 2024-01-01 DOI:10.1155/2024/2244875
Shapoor Shirani, Najmeh-Sadat Mousavi, Milad Ali Talib, Mohammad Ali Bagheri, Elahe Jazayeri Gharebagh, Qasim Abdulsahib Jaafar Hameed, Sadegh Dehghani
{"title":"Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI.","authors":"Shapoor Shirani, Najmeh-Sadat Mousavi, Milad Ali Talib, Mohammad Ali Bagheri, Elahe Jazayeri Gharebagh, Qasim Abdulsahib Jaafar Hameed, Sadegh Dehghani","doi":"10.1155/2024/2244875","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Three-dimensional gradient-echo (3D-GRE) sequences provide isotropic or nearly isotropic 3D images, leading to better visualization of smaller structures, compared to two-dimensional (2D) sequences. The aim of this study was to prospectively compare 2D and 3D-GRE sequences in terms of key imaging metrics, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), glenohumeral joint space, image quality, artifacts, and acquisition time in shoulder joint images, using 1.5-T MRI scanner. <b>Methods:</b> Thirty-five normal volunteers with no history of shoulder disorders prospectively underwent a shoulder MRI examination with conventional 2D sequences, including <i>T</i> <sub>1</sub>- and <i>T</i> <sub>2</sub>-weighted fast spin echo (T<sub>1</sub>/T<sub>2</sub>w FSE) as well as proton density-weighted FSE with fat saturation (PD-FS) followed by 3D-GRE sequences including VIBE, TRUEFISP, DESS, and MEDIC techniques. Two independent reviewers assessed all images of the shoulder joints. Pearson correlation coefficient and intra-RR were used for reliability test. <b>Results:</b> Among 3D-GRE sequences, TRUEFISP showed significantly the best CNR between cartilage-bone (31.37 ± 2.57, <i>p</i> < 0.05) and cartilage-muscle (13.51 ± 1.14, <i>p</i> < 0.05). TRUEFISP also showed the highest SNR for cartilage (41.65 ± 2.19, <i>p</i> < 0.01) and muscle (26.71 ± 0.79, <i>p</i> < 0.05). Furthermore, 3D-GRE sequences showed significantly higher image quality, compared to 2D sequences (<i>p</i> < 0.001). Moreover, the acquisition time of the 3D-GRE sequences was considerably shorter than the total acquisition time of PD-FS sequences in three orientations (<i>p</i> < 0.01). <b>Conclusions:</b> 3D-GRE sequences provide superior image quality and efficiency for evaluating articular joints, particularly in shoulder imaging. The TRUEFISP technique offers the best contrast and signal quality, making it a valuable tool in clinical practice.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/2244875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Three-dimensional gradient-echo (3D-GRE) sequences provide isotropic or nearly isotropic 3D images, leading to better visualization of smaller structures, compared to two-dimensional (2D) sequences. The aim of this study was to prospectively compare 2D and 3D-GRE sequences in terms of key imaging metrics, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), glenohumeral joint space, image quality, artifacts, and acquisition time in shoulder joint images, using 1.5-T MRI scanner. Methods: Thirty-five normal volunteers with no history of shoulder disorders prospectively underwent a shoulder MRI examination with conventional 2D sequences, including T 1- and T 2-weighted fast spin echo (T1/T2w FSE) as well as proton density-weighted FSE with fat saturation (PD-FS) followed by 3D-GRE sequences including VIBE, TRUEFISP, DESS, and MEDIC techniques. Two independent reviewers assessed all images of the shoulder joints. Pearson correlation coefficient and intra-RR were used for reliability test. Results: Among 3D-GRE sequences, TRUEFISP showed significantly the best CNR between cartilage-bone (31.37 ± 2.57, p < 0.05) and cartilage-muscle (13.51 ± 1.14, p < 0.05). TRUEFISP also showed the highest SNR for cartilage (41.65 ± 2.19, p < 0.01) and muscle (26.71 ± 0.79, p < 0.05). Furthermore, 3D-GRE sequences showed significantly higher image quality, compared to 2D sequences (p < 0.001). Moreover, the acquisition time of the 3D-GRE sequences was considerably shorter than the total acquisition time of PD-FS sequences in three orientations (p < 0.01). Conclusions: 3D-GRE sequences provide superior image quality and efficiency for evaluating articular joints, particularly in shoulder imaging. The TRUEFISP technique offers the best contrast and signal quality, making it a valuable tool in clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维梯度回波与二维序列在评估核磁共振成像中肩关节图像质量方面的比较。
背景:与二维(2D)序列相比,三维梯度回波(3D-GRE)序列可提供各向同性或接近各向同性的三维图像,从而更好地观察较小的结构。本研究旨在使用 1.5-T 磁共振成像扫描仪,前瞻性地比较二维和三维梯度回波序列的主要成像指标,包括信噪比 (SNR)、对比度与噪声比 (CNR)、盂肱关节间隙、图像质量、伪影以及肩关节图像的采集时间。研究方法35 名无肩关节疾病史的正常志愿者前瞻性地接受了肩关节磁共振成像检查,采用常规二维序列,包括 T 1 和 T 2 加权快速自旋回波(T1/T2w FSE)以及质子密度加权脂肪饱和 FSE(PD-FS),然后采用三维 GRE 序列,包括 VIBE、TRUEFISP、DESS 和 MEDIC 技术。两名独立审稿人对所有肩关节图像进行了评估。采用皮尔逊相关系数和内RR进行可靠性测试。结果显示在三维 GRE 序列中,TRUEFISP 显示软骨-骨(31.37 ± 2.57,p < 0.05)和软骨-肌肉(13.51 ± 1.14,p < 0.05)之间的 CNR 明显最佳。TRUEFISP 也显示软骨(41.65 ± 2.19,p < 0.01)和肌肉(26.71 ± 0.79,p < 0.05)的信噪比最高。此外,与二维序列相比,三维-GRE 序列的图像质量明显更高(p < 0.001)。此外,在三个方向上,3D-GRE 序列的采集时间大大短于 PD-FS 序列的总采集时间(p < 0.01)。结论三维-GRE序列在评估关节,尤其是肩关节成像方面具有更高的图像质量和效率。TRUEFISP 技术具有最佳的对比度和信号质量,使其成为临床实践中的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
期刊最新文献
Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time. Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI. The Blood-Brain Barrier in Both Humans and Rats: A Perspective From 3D Imaging. Presegmenter Cascaded Framework for Mammogram Mass Segmentation. An End-to-End CRSwNP Prediction with Multichannel ResNet on Computed Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1