Shapoor Shirani, Najmeh-Sadat Mousavi, Milad Ali Talib, Mohammad Ali Bagheri, Elahe Jazayeri Gharebagh, Qasim Abdulsahib Jaafar Hameed, Sadegh Dehghani
{"title":"Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI.","authors":"Shapoor Shirani, Najmeh-Sadat Mousavi, Milad Ali Talib, Mohammad Ali Bagheri, Elahe Jazayeri Gharebagh, Qasim Abdulsahib Jaafar Hameed, Sadegh Dehghani","doi":"10.1155/2024/2244875","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Three-dimensional gradient-echo (3D-GRE) sequences provide isotropic or nearly isotropic 3D images, leading to better visualization of smaller structures, compared to two-dimensional (2D) sequences. The aim of this study was to prospectively compare 2D and 3D-GRE sequences in terms of key imaging metrics, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), glenohumeral joint space, image quality, artifacts, and acquisition time in shoulder joint images, using 1.5-T MRI scanner. <b>Methods:</b> Thirty-five normal volunteers with no history of shoulder disorders prospectively underwent a shoulder MRI examination with conventional 2D sequences, including <i>T</i> <sub>1</sub>- and <i>T</i> <sub>2</sub>-weighted fast spin echo (T<sub>1</sub>/T<sub>2</sub>w FSE) as well as proton density-weighted FSE with fat saturation (PD-FS) followed by 3D-GRE sequences including VIBE, TRUEFISP, DESS, and MEDIC techniques. Two independent reviewers assessed all images of the shoulder joints. Pearson correlation coefficient and intra-RR were used for reliability test. <b>Results:</b> Among 3D-GRE sequences, TRUEFISP showed significantly the best CNR between cartilage-bone (31.37 ± 2.57, <i>p</i> < 0.05) and cartilage-muscle (13.51 ± 1.14, <i>p</i> < 0.05). TRUEFISP also showed the highest SNR for cartilage (41.65 ± 2.19, <i>p</i> < 0.01) and muscle (26.71 ± 0.79, <i>p</i> < 0.05). Furthermore, 3D-GRE sequences showed significantly higher image quality, compared to 2D sequences (<i>p</i> < 0.001). Moreover, the acquisition time of the 3D-GRE sequences was considerably shorter than the total acquisition time of PD-FS sequences in three orientations (<i>p</i> < 0.01). <b>Conclusions:</b> 3D-GRE sequences provide superior image quality and efficiency for evaluating articular joints, particularly in shoulder imaging. The TRUEFISP technique offers the best contrast and signal quality, making it a valuable tool in clinical practice.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/2244875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Three-dimensional gradient-echo (3D-GRE) sequences provide isotropic or nearly isotropic 3D images, leading to better visualization of smaller structures, compared to two-dimensional (2D) sequences. The aim of this study was to prospectively compare 2D and 3D-GRE sequences in terms of key imaging metrics, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), glenohumeral joint space, image quality, artifacts, and acquisition time in shoulder joint images, using 1.5-T MRI scanner. Methods: Thirty-five normal volunteers with no history of shoulder disorders prospectively underwent a shoulder MRI examination with conventional 2D sequences, including T1- and T2-weighted fast spin echo (T1/T2w FSE) as well as proton density-weighted FSE with fat saturation (PD-FS) followed by 3D-GRE sequences including VIBE, TRUEFISP, DESS, and MEDIC techniques. Two independent reviewers assessed all images of the shoulder joints. Pearson correlation coefficient and intra-RR were used for reliability test. Results: Among 3D-GRE sequences, TRUEFISP showed significantly the best CNR between cartilage-bone (31.37 ± 2.57, p < 0.05) and cartilage-muscle (13.51 ± 1.14, p < 0.05). TRUEFISP also showed the highest SNR for cartilage (41.65 ± 2.19, p < 0.01) and muscle (26.71 ± 0.79, p < 0.05). Furthermore, 3D-GRE sequences showed significantly higher image quality, compared to 2D sequences (p < 0.001). Moreover, the acquisition time of the 3D-GRE sequences was considerably shorter than the total acquisition time of PD-FS sequences in three orientations (p < 0.01). Conclusions: 3D-GRE sequences provide superior image quality and efficiency for evaluating articular joints, particularly in shoulder imaging. The TRUEFISP technique offers the best contrast and signal quality, making it a valuable tool in clinical practice.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics