Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source.

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL Structural Dynamics-Us Pub Date : 2024-10-11 eCollection Date: 2024-09-01 DOI:10.1063/4.0000270
Jasmin Jarecki, Martin Hennecke, Themistoklis Sidiropoulos, Matthias Schnuerer, Stefan Eisebitt, Daniel Schick
{"title":"Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source.","authors":"Jasmin Jarecki, Martin Hennecke, Themistoklis Sidiropoulos, Matthias Schnuerer, Stefan Eisebitt, Daniel Schick","doi":"10.1063/4.0000270","DOIUrl":null,"url":null,"abstract":"<p><p>Time-resolved soft-x-ray-diffraction experiments give access to microscopic processes in a broad range of solid-state materials by probing ultrafast dynamics of ordering phenomena. While laboratory-based high-harmonic generation (HHG) light sources provide the required photon energies, their limited photon flux is distributed over a wide spectral range, rendering typical monochromatic diffraction schemes challenging. Here, we present a scheme for energy-dispersive soft-x-ray diffraction with femtosecond temporal resolution and photon energies across the water window from 200 to 600 eV. The experiment utilizes the broadband nature of the HHG emission to efficiently probe large slices in reciprocal space. As a proof-of-concept, we study the laser-induced structural dynamics of a Mo/Si superlattice in an ultrafast, non-resonant soft-x-ray diffraction experiment. We extract the underlying strain dynamics from the measured shift of its first order superlattice Bragg peak in reciprocal space at photon energies around 500 eV via soft-x-ray scattering simulations.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 5","pages":"054303"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000270","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Time-resolved soft-x-ray-diffraction experiments give access to microscopic processes in a broad range of solid-state materials by probing ultrafast dynamics of ordering phenomena. While laboratory-based high-harmonic generation (HHG) light sources provide the required photon energies, their limited photon flux is distributed over a wide spectral range, rendering typical monochromatic diffraction schemes challenging. Here, we present a scheme for energy-dispersive soft-x-ray diffraction with femtosecond temporal resolution and photon energies across the water window from 200 to 600 eV. The experiment utilizes the broadband nature of the HHG emission to efficiently probe large slices in reciprocal space. As a proof-of-concept, we study the laser-induced structural dynamics of a Mo/Si superlattice in an ultrafast, non-resonant soft-x-ray diffraction experiment. We extract the underlying strain dynamics from the measured shift of its first order superlattice Bragg peak in reciprocal space at photon energies around 500 eV via soft-x-ray scattering simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用激光驱动源在水窗中进行超快能量色散软 X 射线衍射。
时间分辨软 X 射线衍射实验可通过探测有序现象的超快动态,了解多种固态材料的微观过程。基于实验室的高次谐波发生(HHG)光源可提供所需的光子能量,但其有限的光子通量分布在很宽的光谱范围内,使得典型的单色衍射方案具有挑战性。在这里,我们提出了一种能量色散软 X 射线衍射方案,它具有飞秒级时间分辨率,光子能量横跨 200 至 600 eV 的水窗。该实验利用 HHG 发射的宽带特性来有效探测倒易空间中的大切片。作为概念验证,我们在超快、非共振软 X 射线衍射实验中研究了激光诱导的 Mo/Si 超晶格结构动力学。通过软 X 射线散射模拟,我们从测量到的一阶超晶格布拉格峰在 500 eV 左右光子能量下的倒易空间移动中提取了潜在的应变动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
期刊最新文献
Integrated edge-to-exascale workflow for real-time steering in neutron scattering experiments. Comprehensive characterization of gas dynamic virtual nozzles for x-ray free-electron laser experiments. ProteinReDiff: Complex-based ligand-binding proteins redesign by equivariant diffusion-based generative models. Element-specific ultrafast lattice dynamics in FePt nanoparticles. Asymmetric conformation of the high-spin state of iron(II)-tris(2,2-bipyridine): Time-resolved x-ray absorption and ultraviolet circular dichroism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1