{"title":"Bridging the Gap: How Neuroinformatics is Preparing the Next Generation of Neuroscience Researchers.","authors":"Mathew Abrams, John Darrell Van Horn","doi":"10.1007/s12021-024-09693-3","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotechnology and big data are two rapidly advancing fields that have the potential to transform our understanding of the brain and its functions. Advancements in neurotechnology have enabled researchers to investigate the function of the brain at unprecedented levels of granularity at the functional, molecular, and anatomical levels. Thus, resulting in the collection of not only more data, but also larger datasets. To fully harness the potential of big data and advancements in neurotechnology to improve our understanding of the nervous system, there is a need to train a new generation of neuroscientists capable of not only domain expertise, but also the computational and data science skills required to interrogate and integrate big data. Importantly, neuroinformatics is the subdiscipline of neuroscience devoted to the development of neuroscience data and knowledge bases together with computational models and analytical tools for sharing, integration and analysis of experimental data, and advancement of theories about the nervous system function. While there are only a few formal training programs in neuroinformatics, and since neuroinformatics is rarely incorporated into traditional neuroscience training programs, the neuroinformatics community has attempted to bridge the gap between the traditional neuroscience education programs and the needs of the next generation of neuroscience researchers through community initiatives and workshops. Thus, the purpose of this special collection is to highlight several such community efforts which span from in-person workshops to large-scale, global virtual training consortiums and from training students to training-the-trainers.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"619-622"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09693-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Neurotechnology and big data are two rapidly advancing fields that have the potential to transform our understanding of the brain and its functions. Advancements in neurotechnology have enabled researchers to investigate the function of the brain at unprecedented levels of granularity at the functional, molecular, and anatomical levels. Thus, resulting in the collection of not only more data, but also larger datasets. To fully harness the potential of big data and advancements in neurotechnology to improve our understanding of the nervous system, there is a need to train a new generation of neuroscientists capable of not only domain expertise, but also the computational and data science skills required to interrogate and integrate big data. Importantly, neuroinformatics is the subdiscipline of neuroscience devoted to the development of neuroscience data and knowledge bases together with computational models and analytical tools for sharing, integration and analysis of experimental data, and advancement of theories about the nervous system function. While there are only a few formal training programs in neuroinformatics, and since neuroinformatics is rarely incorporated into traditional neuroscience training programs, the neuroinformatics community has attempted to bridge the gap between the traditional neuroscience education programs and the needs of the next generation of neuroscience researchers through community initiatives and workshops. Thus, the purpose of this special collection is to highlight several such community efforts which span from in-person workshops to large-scale, global virtual training consortiums and from training students to training-the-trainers.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.