{"title":"A multi-scale feature extraction and fusion-based model for retinal vessel segmentation in fundus images.","authors":"Jinzhi Zhou, Guangcen Ma, Haoyang He, Saifeng Li, Guopeng Zhang","doi":"10.1007/s11517-024-03223-8","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the challenge of low accuracy in retinal vessel segmentation attributed to the minute nature of the vessels, this paper proposes a retinal vessel segmentation model based on an improved U-Net, which combines multi-scale feature extraction and fusion techniques. An improved dilated residual module was first used to replace the original convolutional layer of U-Net, and this module, coupled with a dual attention mechanism and diverse expansion rates, facilitates the extraction of multi-scale vascular features. Moreover, an adaptive feature fusion module was added at the skip connections of the model to improve vessel connectivity. To further optimize network training, a hybrid loss function is employed to mitigate the class imbalance between vessels and the background. Experimental results on the DRIVE dataset and CHASE_DB1 dataset show that the proposed model has an accuracy of 96.27% and 96.96%, sensitivity of 81.32% and 82.59%, and AUC of 98.34% and 98.70%, respectively, demonstrating superior segmentation performance.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03223-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the challenge of low accuracy in retinal vessel segmentation attributed to the minute nature of the vessels, this paper proposes a retinal vessel segmentation model based on an improved U-Net, which combines multi-scale feature extraction and fusion techniques. An improved dilated residual module was first used to replace the original convolutional layer of U-Net, and this module, coupled with a dual attention mechanism and diverse expansion rates, facilitates the extraction of multi-scale vascular features. Moreover, an adaptive feature fusion module was added at the skip connections of the model to improve vessel connectivity. To further optimize network training, a hybrid loss function is employed to mitigate the class imbalance between vessels and the background. Experimental results on the DRIVE dataset and CHASE_DB1 dataset show that the proposed model has an accuracy of 96.27% and 96.96%, sensitivity of 81.32% and 82.59%, and AUC of 98.34% and 98.70%, respectively, demonstrating superior segmentation performance.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).