{"title":"Contour-constrained branch U-Net for accurate left ventricular segmentation in echocardiography.","authors":"Mingjun Qu, Jinzhu Yang, Honghe Li, Yiqiu Qi, Qi Yu","doi":"10.1007/s11517-024-03201-0","DOIUrl":null,"url":null,"abstract":"<p><p>Using echocardiography to assess the left ventricular function is one of the most crucial cardiac examinations in clinical diagnosis, and LV segmentation plays a particularly vital role in medical image processing as many important clinical diagnostic parameters are derived from the segmentation results, such as ejection function. However, echocardiography typically has a lower resolution and contains a significant amount of noise and motion artifacts, making it a challenge to accurate segmentation, especially in the region of the cardiac chamber boundary, which significantly restricts the accurate calculation of subsequent clinical parameters. In this paper, our goal is to achieve accurate LV segmentation through a simplified approach by introducing a branch sub-network into the decoder of the traditional U-Net. Specifically, we employed the LV contour features to supervise the branch decoding process and used a cross attention module to facilitate the interaction relationship between the branch and the original decoding process, thereby improving the segmentation performance in the region LV boundaries. In the experiments, the proposed branch U-Net (BU-Net) demonstrated superior performance on CAMUS and EchoNet-dynamic public echocardiography segmentation datasets in comparison to state-of-the-art segmentation models, without the need for complex residual connections or transformer-based architectures. Our codes are publicly available at Anonymous Github https://anonymous.4open.science/r/Anoymous_two-BFF2/ .</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03201-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Using echocardiography to assess the left ventricular function is one of the most crucial cardiac examinations in clinical diagnosis, and LV segmentation plays a particularly vital role in medical image processing as many important clinical diagnostic parameters are derived from the segmentation results, such as ejection function. However, echocardiography typically has a lower resolution and contains a significant amount of noise and motion artifacts, making it a challenge to accurate segmentation, especially in the region of the cardiac chamber boundary, which significantly restricts the accurate calculation of subsequent clinical parameters. In this paper, our goal is to achieve accurate LV segmentation through a simplified approach by introducing a branch sub-network into the decoder of the traditional U-Net. Specifically, we employed the LV contour features to supervise the branch decoding process and used a cross attention module to facilitate the interaction relationship between the branch and the original decoding process, thereby improving the segmentation performance in the region LV boundaries. In the experiments, the proposed branch U-Net (BU-Net) demonstrated superior performance on CAMUS and EchoNet-dynamic public echocardiography segmentation datasets in comparison to state-of-the-art segmentation models, without the need for complex residual connections or transformer-based architectures. Our codes are publicly available at Anonymous Github https://anonymous.4open.science/r/Anoymous_two-BFF2/ .
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).