Macropinocytosis mediates resistance to loss of glutamine transport in triple-negative breast cancer.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Journal Pub Date : 2024-10-17 DOI:10.1038/s44318-024-00271-6
Kanu Wahi, Natasha Freidman, Qian Wang, Michelle Devadason, Lake-Ee Quek, Angel Pang, Larissa Lloyd, Mark Larance, Fabio Zanini, Kate Harvey, Sandra O'Toole, Yi Fang Guan, Jeff Holst
{"title":"Macropinocytosis mediates resistance to loss of glutamine transport in triple-negative breast cancer.","authors":"Kanu Wahi, Natasha Freidman, Qian Wang, Michelle Devadason, Lake-Ee Quek, Angel Pang, Larissa Lloyd, Mark Larance, Fabio Zanini, Kate Harvey, Sandra O'Toole, Yi Fang Guan, Jeff Holst","doi":"10.1038/s44318-024-00271-6","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) metabolism and cell growth uniquely rely on glutamine uptake by the transporter ASCT2. Despite previous data reporting cell growth inhibition after ASCT2 knockdown, we here show that ASCT2 CRISPR knockout is tolerated by TNBC cell lines. Despite the loss of a glutamine transporter and low rate of glutamine uptake, intracellular glutamine steady-state levels were increased in ASCT2 knockout compared to control cells. Proteomics analysis revealed upregulation of macropinocytosis, reduction in glutamine efflux and increased glutamine synthesis in ASCT2 knockout cells. Deletion of ASCT2 in the TNBC cell line HCC1806 induced a strong increase in macropinocytosis across five ASCT2 knockout clones, compared to a modest increase in ASCT2 knockdown. In contrast, ASCT2 knockout impaired cell proliferation in the non-macropinocytic HCC1569 breast cancer cells. These data identify macropinocytosis as a critical secondary glutamine acquisition pathway in TNBC and a novel resistance mechanism to strategies targeting glutamine uptake alone. Despite this adaptation, TNBC cells continue to rely on glutamine metabolism for their growth, providing a rationale for targeting of more downstream glutamine metabolism components.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00271-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) metabolism and cell growth uniquely rely on glutamine uptake by the transporter ASCT2. Despite previous data reporting cell growth inhibition after ASCT2 knockdown, we here show that ASCT2 CRISPR knockout is tolerated by TNBC cell lines. Despite the loss of a glutamine transporter and low rate of glutamine uptake, intracellular glutamine steady-state levels were increased in ASCT2 knockout compared to control cells. Proteomics analysis revealed upregulation of macropinocytosis, reduction in glutamine efflux and increased glutamine synthesis in ASCT2 knockout cells. Deletion of ASCT2 in the TNBC cell line HCC1806 induced a strong increase in macropinocytosis across five ASCT2 knockout clones, compared to a modest increase in ASCT2 knockdown. In contrast, ASCT2 knockout impaired cell proliferation in the non-macropinocytic HCC1569 breast cancer cells. These data identify macropinocytosis as a critical secondary glutamine acquisition pathway in TNBC and a novel resistance mechanism to strategies targeting glutamine uptake alone. Despite this adaptation, TNBC cells continue to rely on glutamine metabolism for their growth, providing a rationale for targeting of more downstream glutamine metabolism components.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大核细胞介导三阴性乳腺癌对谷氨酰胺转运损失的抵抗。
三阴性乳腺癌(TNBC)的新陈代谢和细胞生长独特地依赖于谷氨酰胺转运体 ASCT2 的摄取。尽管之前有数据报道 ASCT2 基因敲除后会抑制细胞生长,但我们在这里发现 TNBC 细胞系可以耐受 ASCT2 CRISPR 基因敲除。尽管失去了谷氨酰胺转运体且谷氨酰胺摄取率较低,但与对照细胞相比,ASCT2敲除细胞内的谷氨酰胺稳态水平有所增加。蛋白质组学分析表明,在 ASCT2 基因敲除的细胞中,大蛋白细胞吞噬功能上调,谷氨酰胺外流减少,谷氨酰胺合成增加。在TNBC细胞系HCC1806中缺失ASCT2会诱导五个ASCT2基因敲除克隆的巨核细胞增多,而在ASCT2基因敲除的克隆中,巨核细胞增多的幅度不大。与此相反,ASCT2 基因敲除损害了非大核细胞 HCC1569 乳腺癌细胞的细胞增殖。这些数据确定了大吞噬细胞是 TNBC 中获取谷氨酰胺的关键次级途径,也是单独针对谷氨酰胺摄取策略的一种新型抵抗机制。尽管有这种适应性,TNBC 细胞的生长仍然依赖谷氨酰胺代谢,这为靶向更多谷氨酰胺代谢下游成分提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
期刊最新文献
GOLPH3 and GOLPH3L maintain Golgi localization of LYSET and a functional mannose 6-phosphate transport pathway. New players and targets in mannose 6-phosphate-dependent lysosomal sorting. STING induces HOIP-mediated synthesis of M1 ubiquitin chains to stimulate NF-κB signaling. Structural insight into Okazaki fragment maturation mediated by PCNA-bound FEN1 and RNaseH2. An EpCAM/Trop2 mechanostat differentially regulates collective behaviour of human carcinoma cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1